• Title/Summary/Keyword: Landfilling age

Search Result 3, Processing Time 0.015 seconds

Effect of Landfill Site Characteristics on Siloxane Production in Landfill Gas (매립지 특성이 매립가스 내 siloxane 발생에 미치는 영향)

  • Nam, Sangchul;Kang, Jeong-Hee;Hur, Kwang-Beom;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.44-53
    • /
    • 2011
  • Siloxane, organo-silicon compound, is used in the various forms of products such as cosmetics and detergents due to its quality physical chemistry attributes. Siloxane included in landfill gas which is caused in the process of decomposing of such products after landfill has imposed negative impacts on the operation of landfill gas utility facilities. The objective of this study was to investigate the siloxane production characteristics depending on the features of various landfill site in Korea so that the analysis was made on the landfilling age and landfill waste by in terms of its concentration, structure and composition. As for the concentration of siloxane depending on time passage, 12 landfill sites were reviewed by landfilling age. As for production attributes change of siloxane by landfill wastes, the source of wastes, physical production ration and siloxane concentration were compared in 6 landfills. The average concentration of total-siloxane within LFG is $6.75mg/m^3$ and cyclic-siloxane out of it occupies over 93%. By element, D4 and D5 in order take the highest proportion regardless of total-siloxane concentration and landfilling age. Even though this study is not able to verify the different impact of each kind of wastes on the generation of siloxane, it is confirmed that total-siloxane and cyclic-siloxane decrease in line with the increase of landfilling age as it does in the first order decay model for landfill gas.

Spectroscopic Characterization of Humic Substances Present in Landfill Leachates with Respect to Landfilling Age (매립 연령에 따른 침출수중에 존재하는 휴믹물질의 분광학적 특성 분석)

  • Kang, Kihoon;Shin, Hyun-Sang;Park, Heekyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1113-1126
    • /
    • 2000
  • Humic substances present in landfill leachates were extracted and their characteristics were analyzed with respect to landfilling age as a basic study to evaluate the effect of humic substances on the transport and transformation of other pollutants in pollution plume contaminated by landfill leachate. Element analysis of the extracted humic substances were performed. The information on the functional groups of the humic substances molecules were obtained from the spectroscopic analysis using UV-visible, FT/IR, and fluorescence spectroscopy. The structural characteristics of the humic substances were also analyzed by $^1H$ and $^{13}C$ NMR spectroscopy. From the results of the analyses it was found that the structure of the humic substances present in landfill leachates was more aliphatic than aromatic relative to other common humic substances extracted from natural soils and water. The results indicate that the degree of humification of the humic substances were relatively low. The degree of humification, however, was increased as the landfilling age was increased.

  • PDF

Anaerobic Biodegradability of Leachates Generated at Landfill Age (매립년한에 따른 침출수의 혐기성 생분해 특성)

  • Shin, Hang-Sik;Lee, Chae-young;Kang, Ki-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.90-96
    • /
    • 2000
  • The composition of leachates varies depending on the waste characteristics, landfill age and landfilling method. Generally, leachates contain high dissolved organic substance and ammonia nitrogen whereas phosphorus concentration was very low. Leachate A produced from young landfill is characterized by high BOD5/COD ratio (0.8) whereas leachate C produced from old landfill has lower BOD5/COD ratio (0.1). Maximum biochemical methane potential of leachate A, B (from medium landfill) and C were 271,106 and 4 ml CH4/g-COD, respectively. On the other hand, the maximum biodegradability of leachate A, B, and C were 75,30, and 1%, respectively. These results indicated that anaerobic treatment of leachate from young landfill was effective in removing organic pollutants. In case of leachate C, carbon might reside in the form of large molecular weight organic compounds such as lignins, humic acids and other polymerized compounds of soils, which are resistant to biodegradation. The lag-phase period increased with the increasing organic concentration in leachate. In case of leachate A of concentration greater than 25%, the lag-phase period increased sharply. This implied that the start-up period of anaerobic process using an unacclimated inoculum could be extended due to the higher concentration of leachate. This relatively long lag-phase is probably related to the fact that most of the inhibitory compounds have been diluted beyond their inhibitory concentrations of less than 50%. Furthermore, the ultimate methane yield and methane production rate decreased as leachate concentration increased. It was anticipated the potential inhibition was related with the steady-state inhibition as well as the initial shock load.

  • PDF