• Title/Summary/Keyword: Landfill volume

Search Result 79, Processing Time 0.024 seconds

Biofiltration of Odorous Compounds in Municipal Solid Waste Landfill Gases (생물탈취상에 의한 도시폐기물 매립지가스내 악취물질의 처리)

  • 남궁완;박준석;황의영;이노섭;인병훈;김정대
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.85-96
    • /
    • 1999
  • Biofiltration is an attractive technique for elimination of VOCs and odorous compounds from low-concentration, high-volume waste gas streams because of its simplicity and cost-effectiveness. The objective of this study was to estimate the removal characteristics of Odorous Compounds including $H_2$S, $NH_3$End BTEX in MSW landfill gases. This Study was conducted at Nanjido landfill site. A compost from the Nanjido composting facility was used as a filling material for biofiltration. Extracted landfill gases were injected into biofilter reactors after mixing with air. Experiments were performed in an incubator being set to $20^{\circ}C$ $H_2$S concentrations were monitored at the depths of 25, 50, 75 and 100cm from the bottom Of the biofilter reactors. 98% of $H_2$S was removed at the filling depth of only 25cm. NH$_3$removal rate was about 85%. Toluene removal rate was the highest among BTEX. Significant pH drop of a filling material was not observed during the biofilter operation of 1 month. Without mixing the landfill gas stream with all, the removal rate of $H_2$S decreased down to 30%.

  • PDF

Combustion Characteristics of Landfill Gas in Constant Volume Combustion Chamber for Large Displacement Volume Engine (IV) -Torch Ignition (2) - (대형기관 모사 정적연소실에서 매립지 가스의 연소특성에 대한 연구 (IV) -토치 점화 (2)-)

  • Ko, Ansu;Ohm, Inyong;Kwon, Soon Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.135-146
    • /
    • 2015
  • This paper is the fourth on the combustion characteristics of the landfill gas in a constant volume combustion chamber for a large displacement volume commercial engine and the second dealing with torch ignition. It discusses the combustion characteristics of torch ignition on the basis of the heat release and visualization. The results show that the jet and/or spout from the torch promote combustion by accelerating the flame front in the main combustion chamber. In addition, a hot gas jet exists when the orifice diameter is 4 mm, whereas the flame passes directly through the orifice if the diameter is 6 mm or greater. In addition, the effect of torch ignition differs according to the combination of the methane fraction, torch volume, and orifice size because various combustion processes occur as a result of the interaction of these parameters. Finally, it was found that the most suitable torch should have an orifice diameter of not less than 6 mm and an area ratio of not more than 0.15 to secure a consistent combustion process in a real engine.

A Study on Correlation between Volume Conversion Factor and Apparent Density of Wastes Buried in Landfill (매립폐기물의 겉보기밀도와 체적환산계수의 상관관계 연구)

  • Cho, Jinwoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.33-40
    • /
    • 2020
  • It is now common to find the wastes buried in the past during the excavation process of soil for large scale housing and land development. Without proper treatment of the wastes environmentally, the excavation process is no longer able to proceed, and an action plan should be provided to treat the wastes with environmental and economic viability. In the study, the relationship between the apparent density of the wastes and the volume conversion factor, which is the basis in the estimation of waste treatment cost was investigated. From 10 sampling points of a landfill site, wastes were sampled, analyzed for physical characteristics, and the apparent density of mixed and sorted waste was assessed. Applying the empirical formula, and the formula we suggested here, the volume conversion factors were compared with that measured directly in the field using dump truck and excavator. Obviously there was a close relationship among the volume conversion factors resulting from the empirical formula, the formula we suggested and that measured in the field.

Effects of Gas Generation due to Biodegradation on Long-term Landfill Settlement (매립장의 생분해로 인한 가스발생이 장기 침하에 미치는 영향)

  • Ahn, Tae-Bong;Chin, Han-Gyu;Han, Woon-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.5-13
    • /
    • 2005
  • The conventional settlement prediction method is not appropriate to model landfill settlement because it is very complex phenomenon. Biodegradation needs to be considered for long-term settlement since landfills are comprised of various organic materials and soils. As organic materials are decomposed, they directly influences on settlement producing LFG(Landfill Gas). Therefore, mathematical settlement prediction model is proposed based on the generated gas volume. As one of stabilization methods, leachate recycling system is adopted to model tests. Two model tests; one is leachate recycled, the other is non-recycled, are componented with proposed model and analysed regarding gas generation and settlement. The proposed mathematical model requires correction coefficients of 1.4 and 1.7 for non-recycled model and recycled, respectively. The recycled model showed 22% increase of long-term settlement more than the non-recycled model.

  • PDF

Characterization of Polyurethane and Soil Layers for In-situ Treatment of Landfill Leachate (매립지 침출수 현장 처리를 위한 폴리우레탄과 개질토의 특성 분석 실험에 관한 연구)

  • Park, Chan-Soo;Jung, Young-Wook;Park, Joong sub;Back, Won seok;Shin, Won sik;Chun, Byung sik;Han, Woo-Sun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.281-286
    • /
    • 2007
  • A chemical and biological permeable barrier with economic feasibility is suggested to treat landfill leachate in this study. The proposed composite layers consist of bentonite, and polyurethane (PU) foam that is mixed with powdered activated carbon (PAC) and inoculated with microorganisms from local wastewater treatment plant. Each layer is mixed with local sand, and yellow brown soil. Batch tests were conducted to investigate the sorptions of nitrate on the PU foam and PAC, and nitrification/denitrification rate of each layer material. Nitrification occurred in 30 minutes with initial ammonia concentration of 100 mg/L, and the concentration of nitrate attached in the PU foam increased after 270 minutes. Results of denitrification batch tests showed 76.6%, 87.3% and 88% of nitrate removal efficiency at 10%, 20% and 30% of the volume ratio of PU foam, respectively. The pH increased from 7 to 9.42, and alkalinity increased from 980 mg/L to 1720 mg/L during the denitrification batch tests. In the column experiments using the proposed composite layers with 20% of the volume ratio of the PU foam, about 96% of BOD, 63% of COD, 58.1~79.5% of total nitrogen were removed.

Settling behaviour of clay slurries enhanced by using electrokinetics (동전기에 의한 점토슬러리의 침강 촉진에 관한 연구)

  • Kim, Dae-Ho;Kim, Soo-Sam;Lee, Myung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1061-1064
    • /
    • 2008
  • A completion of settling process takes a lot of time for dredged materials of high moisture content, such as contaminated sludge, in landfill site. In general, additives (e.g. flocculants) are used for reducing settling time of such colloidal material, which results in the increase of sludge volume, and hence much space is required in landfill site. This study is to suggest alternative method in order to enhance the settling process of cohesive clayey soils. A number of gravitational sedimentation tests as well as electrokinetic experiments were conducted to investigate the variation of initial moisture content on the settling behaviour of clay slurry. Surface settlement, electric current and local voltage gradient were monitored during the experiment, and moisture content and soil pH were measured after the experiment. From the results, the application of electrokinetics was found to be effective in volume reduction (i.e. increase of settling velocity and decrease of final moisture content) by comparison with gravitational settling process.

  • PDF

The Effect of Air Injection Quantity on Stabilization of Screened Soil in Aerobic Bioreactor Landfill (호기성 Bioreactor 매립지에 있어서 공기주입량이 선별토사의 안정화에 미치는 영향)

  • Park, Jin-Kyu;Lee, Nam-Hoon;Kim, Nack-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2004
  • In this study, we stabilized the screened soil from landfills by using aerobic bioreactor and evaluated aerobic decomposition of it. Four lab-scale bioreactors (anaerobic and 1 PV/day aeration, 5 PV/day aeration, 10 PV/day aeration) filled with screened soil were operated to investigate the effect of air injection quantity on stabilization of screened soil. In case of aerobic bioreactors, the decomposition of organics in screened soil was higher than anaerobic bioreactor. According to the results of landfill gas and soil respiration test, the air injection quantity of 5 PV/day was most efficient in stabilization of screened soil.

  • PDF

The Evaluation on In-Situ Adaptability of Mono-layer Landfill Final Cover System (단층형 매립지 최종복토시스템의 현장 적용성 평가)

  • Yu, Chan;Yun, Sung-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.73-80
    • /
    • 2006
  • The mono-layer cover system is composed of soils only as a filling material and various plants are planted on the surface to control the water balance in the cover system. In this paper, the mono-layer cover system was considered as an alternative landfill final cover system and developed a model that could utilize industrial by-product (especially, coal ash & phosphogypsum) as additive filling materials. The mixture of granite soil, coal ash, and phosphogypsum was placed as a cover material in a box constructed with cement. Laboratory tests were carried out to investigate the environmental effect on the utilization of coal ash & phosphogypsum and to determine the mxing ratio of each materials. In the leaching test, all materials showed lower heavy metal concentration than the threshold values of regulation. The optimum mixing ratio of materials which was applied to field model test was determined to soil (4) : coal ash (1) : phosphogypsum (1) on the volume base. Field model tests were continued from February to July, 2004 in the soil box that was constructed with cement block. It was verified that coal ash and phospogypsum mixed with soil was to be safe environmentally and the water balance of mono-layer cover system was reasonable.

Investigation on the biodegradation of VOCs in soil, sewage sludge, and food waste compost (토양.하수 슬러지.음식물 쓰레기 퇴비내에서의 휘발성 유기화합물(VOCs)의 기체상 생분해에 관한 연구)

  • 김혜진;이은영;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.11-14
    • /
    • 2000
  • Wastewater sludge and composted food wastes were examined as the alternatives of a landfill cover for soils to eliminate the emission of VOCs. The benefit of these alternatives is in their high sorption capacity, which is 5 to 50 times higher than natural soils. After sorption is finished, biodegradation is an important mechanism in decrease of VOCs concentration. In order to investigate appropriate VOCs degradation condition, biodegradation batch experiment is being conducted with isolated strain X9-c. Both benzene and TCE were degraded only in soil with 12%(water volume/sorbent volumn) water condition. When the water condition varied from 12 to 48% in compost, optimum water conditions of composted food waste was 36%.

  • PDF