• Title/Summary/Keyword: Land use/land cover

Search Result 525, Processing Time 0.03 seconds

Evaluation of Soil Loss with Surface Covering Methods Using Strip Tillage Seeding Device

  • Lee, Jeong-Tae;Ryu, Jong-Soo;Lee, Gye-Jun;Jung, Hee-Ju;Kim, Jeom-Soon;Park, Seok-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.425-431
    • /
    • 2014
  • Most fields in highland areas are covered with rye or hairy vetch for conservation during a fallow. However, using cover crops needs an effort to sow, and this makes top soil more vulnerable to loss due to surface disturbances. The aims of this study were to develop an automatic seeding-regulator device using a low-price, extensive-use GPS sensors and a DC motors and to evaluate a working efficiency of it after adaptation to partial tillage machine for reducing seeding effort. The amount of runoff water and soil loss was evaluated with partial tillage and simultaneous-seeding after harvesting soybean, in 17% slope lysimeters. In results, the seeding amount with the machine speed was stable between $0.5{\sim}0.8m\;s^{-1}$ of working sections. The automatic control device of seeding-rate could be enough to solve the slip problems of power selecting supply system or five four-wheel drive device. In partial tillage and simultaneous seeding, runoff water was 11.6% ($1.8m^3ha^{-1}$) of the scatter-seeding control ($15.5m^3ha^{-1}$) and soil loss was 13.2% ($7kg\;ha^{-1}$) of the scatter-seeding control ($53kg\;ha^{-1}$). These results suggest that partial tillage and simultaneous-seeding methods are very effective in decreasing work effort and soil loss of sloped land.

Suggestions for Ecological Stream Restoration (생태하천 복원 방안)

  • Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.59-68
    • /
    • 2007
  • Urban streams have been severely degraded with wastewater and concrete structure over a prolonged period. The Chonggyecheon Restoration Project recovered a stream in the downtown Seoul with landscaping, plantings and bridges after the cover concrete and elevated asphalt road were removed. The project has been criticized partly because it is not an ecological restoration but rather the development of an urban park with an unnaturally straight flowing stream, artificial building structures, and artificial water pumping from the Han River. Nevertheless, the public have praised the project and almost 100,000 visitors per day come to see the reeds, catfish, and ducks. The stream restoration project is attractive to central and regional government decision makers because it increases the public concern of landscape amenity. Several projects such as Sanjichon and Kaeumjungchon are on going and proposed. These projects have a common and different respect in scope and procedure. The Chonggyecheon project in the process of environmental impact assessment (EIA) and prior environmental review system (PERS) reviewed the environmental impacts before development. Kaeumjungchon in the PERS and Sanjichon without EIA and PERS are reviewed. EIA and PERS systems contribute to checking the ecological sustainability of the restoration projects. A stream restoration project is a very complex task, so an integrated approach from plan to project is needed for ecologically sound restoration. Ecological stream restoration requires 1) an assessment of the entire stream ecosystem 2) establishing an ecologically sound management system of the stream reflecting not only benefits for people but also flora and fauna; 3) developing the site-specific design criteria and construction techniques including habitat restoration, flood plains conservation, and fluvial management; 4) considering the stream watershed in land use plan, EIA, PERS, and strategic environmental assessment (SEA). Additionally the process needs to develop the methodologies to enhance stakeholder's participation during planning, construction, and monitoring.

Climate Change Concerns in Mongolia

  • Dagvadorj, D.;Gomboluudev, P.;Natsagdorj, L.
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.47-54
    • /
    • 2003
  • Climate of Mongolia is a driven force on natural conditions as well as socio-economic development of the country. Due to the precariousness of climate conditions and traditional economic structure, natural disasters, specially disasters of meteorological and hydrological origin, have substantial effect upon the natural resources and socio-economic sectors of Mongolia. Mongolia's climate is characterized by high variability of weather parameters, and high frequency and magnitude of extreme climate and weather events. During the last few decades, climate of the country is changing significantly under the global warning. The annual mean air temperature for the whole territory of the country has increased by $1.56^{\circ}C$ during the last 60 years,. The winter temperature has increased by $1.56^{\circ}C$. These changes in temperature are spatially variable: winter warming is more pronounced in the high mountains and wide valleys between the mountains, and less so in the steppe and Gobi regions. There is a slight trend of increased precipitation during the last 60 years. The average precipitation rate is increased during 1940-1998 by 6%. This trend is not seasonally consistent: while summer precipitation increased by 11 %, spring precipitation decreased by 17. The climate change studies in Mongolia show that climate change will have a significant impact on natural resources such as water resources, natural rangeland, land use, snow cover, permafrost as well as major economic activities of arable farming, livestock, and society (i.e. human health, living standards, etc.) of Mongolia. Therefore, in new century, sustainable development of the country is defined by mitigating and adaptation policies of climate change. The objective of the presentation is to contribute one's idea in the how to reflect the changes in climate system and weather extreme events in the country's sustainable development concept.

  • PDF

Utilizing Spatial Information for Landform Analysis and Web-Based Sight-Seeing Guidance of the Natural Park -A Case Study of Kumoh Mt Province Park- (자연공원의 지형분석과 웹기반 관광안내를 위한 공간정보의 활용 -금오산 도립공원을 중심으로-)

  • Lee, Jin-Duk;Choi, Young-Geun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.2 s.20
    • /
    • pp.39-47
    • /
    • 2002
  • For the purpose of data construction for the systematic management and sight-seeing guidance of the natural park, the Kumoh Mt. Province Park was selected as a pilot area. Digital topographic maps, thematic maps and satellite imagery covering the object area were processed and then landform analysis for elevation, slope, aspect and so on was conducted through DEM generation, and the landcover map and NDVI maP were extracted from Landsat TM data. The database was then constructed with these spatial data for GSIS. The image map was generated from IKONOS satellite data, which cover the pilot area data, with one meter resolution and also 3D visualization which was overlaid with main paths up a mountain were conducted. And the moving image files were produced along main paths up including main natural spectacular sights, cultural assets and management facilities. It is expected that the research result can be utilized as the fundamental data for re-assessing suitable land use and constructing Web-based guidance system.

  • PDF

Evaluation of Habitat Function of National Park Based on Biodiversity and Habitat Value (보호지역의 지정 및 관리를 위한 국립공원의 서식처 기능 평가 -생물종다양성과 서식처 가치에 기반하여-)

  • Ryu, Ji-Eun;Choi, Yu-Young;Jeon, Seong-Woo;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.5
    • /
    • pp.39-60
    • /
    • 2018
  • National parks are designated for the purpose of maintenance, conservation and utilization of different habitats. Therefore, it is necessary to select habitats of a high value as a protected area in order to balance conservation and development. However, the existing national park boundary adjustment and new designation criteria only focused on the endangered species and protected area, without proper evaluation of the habitat value of actual species. Therefore, this study aims to quantitatively evaluate habitat function in terms of biodiversity and habitat value, so that it can be referred to for the designation and boundary adjustment of national parks. We assessed species diversity and habitat values for each of the habitat types, for mammals only, as they are able to choose preferred habitats. In order to evaluate biodiversity, we used Maxent to derive species richness map and used InVEST's Habitat quality model to evaluate habitat value. As a result of evaluation, species richness was high in the national park boundary area. Also, even if the same edge is adjacent to the development area depending on the land cover, the species richness is low. Compared with Wolaksan and Sobaeksan National Park, the species richness and habitat value of the northern area, which is connected with other forests, were higher than those of the southern area where roads were developed. Therefore, it is expected that the use of the result of this study for the national park boundary adjustment and management will enhance the function of the national park as a habitat.

Characterizing Changes of Water Quality and Relationships with Environmental Factors in the Selected Korean Reservoirs (우리나라 주요 호소의 수질 변동 경향성 분석 및 유형화)

  • Kwon, Yong-Su;Bae, Mi-Jung;Kim, Jun-Su;Kim, Yong-Jae;Kim, Baik-Ho;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.146-159
    • /
    • 2014
  • In this study, we evaluated the temporal changes of water quality in the 90 reservoirs in Korea and the relationships between water quality and their environmental factors in the reservoirs for effective management of reservoirs. The majority of study reservoirs were categorized as the eutrophic state based on Carlson's trophic index. Among 90 reservoirs, more than 55.0% were nutrient-rich based on $TSI_{TP}$ in each month, where more than 50.0% were nutrient-rich based on $TSI_{Chl-a}$ from June to November. Seasonal Mann-Kendall test was used to analyze temporal variation of water quality in the selected 60 reservoirs using monthly data from 2004 to 2008. The results showed that 27 (45.0%) reservoirs showed the improvement of water quality based on TP and Chl-a concentrations, while 14 (23.3%) and 11 (18.3%) reservoirs displayed the degradation of water quality based on TP and Chl-a concentrations, respectively. Meanwhile, a self-organizing map classified the study reservoirs into five groups based on differences of hydrogeomorphology (altitude, catchment area, bank height, lake age, etc.). Physicochemical factors and land use/cover types showed clear differences among groups. Finally, hydrogeomorphology of reservoirs were related to water quality, indicating that the hydrogeomorphological characters strongly affect water quality of reservoirs.

Study on security measures for protecting major national facilities using the wind corridor (바람길을 활용한 국가중요지역 안전대책 강구에 관한 연구)

  • Choi, Kee-Nam
    • Convergence Security Journal
    • /
    • v.11 no.5
    • /
    • pp.109-120
    • /
    • 2011
  • How meteorological situations have affected human life for survival have been an important element of living or military strategy throughout history. In modern society, overcrowding of cities has brought about many problems. Moreover, high-rise buildings and land cover have been causing abnormal weather conditions. The wind corridor, especially in urban areas has been flowing differently from the dominant weather condition of the surroundings. Therefore, the wind corridor in urban areas can be a main component in protecting major national facilities in urban areas from damage. Especially the wind corridor is a main factor to derive harm from poisonous substances in air. This paper seeks to find out the wind corridor in urban areas and the efficiency of that. In addition to that, it studies how to use the direction to protect major national facilities and areas from damage. It is considered that this study will be useful to make defence project, not only for preventing CBR(chemical, biological, and radiological) terrorism and violent assembly, but also for evacuation of people in case of big accidents or natural disasters.

Evaluation of Potential Amount of Groundwater Development in Chungju Basin by Using Watershed Hydrologic Model and Frequency Analysis (유역수문모형과 빈도해석을 이용한 충주댐 상류유역 지하수 개발가능량의 평가)

  • Lee, Jeong-Eun;Kim, Nam-Won;Chung, Il-Moon;Lee, Jeong-Woo
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.443-451
    • /
    • 2008
  • Memon(1995) pointed out that the groundwater recharge from the precipitation is affected by various factors such as the occurrence, intensity, duration, and seasonal distribution of rainfall; air temperature, humidity, and wind velocity; the character and thickness of the soil layer above the water table; vegetated cover, soil moisture content, depth to the water table, topography; and land use. To reflect above factors, groundwater recharge in Chungju basin is computed by using the SWAT-K which is a longterm continuous watershed hydrologic model. Frequency analysis is adopted to evaluate the existing values of potential amount of groundwater development which is made by the 10 year drought frequency rainfall multiplied by recharge coefficient. In this work, the recharge rates of 10 year drought frequency in subbains were computed and compared with the existing values of potential amount of groundwater development. This process could point out the problems of existing precesses used for computing potential amount of groundwater development.

SLC-off Image Correlation and Usability Evaluation by Gapfill Function (Gapfill 함수에 의한 SLC off 영상 보정 및 활용성 평가)

  • Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3692-3697
    • /
    • 2012
  • Landsat 7 ETM+ sensor is getting imageries in the SLC-off state since May 31, 2003 due to mechanical defect of SLC(Scan Line Corrector). Therefore additional correction works are required to use these imageries. In this study, Landsat 7 SLC-off imageries were corrected using Gapfill function and compared with Landsat 5 around the same time. Most of pixels in omitted areas due to SLC-off by producing SLC-off imageries and imageries without visual incompatibility could be achieved as there were not unnatural noises. Also, the corrected imageries were performed land cover classification which was compared with the classification result using reference image. To do this, it could be suggested the possibility of SLC-off imagery. Landsat 7 SLC-off corrected imageries will improve the difficult conditions to detect changes of large areas and be used to detect changes of large areas and classify imageries as well as to recover imagery loss arising regionally such as small scale cloud, etc.

Low-flow simulation and forecasting for efficient water management: case-study of the Seolmacheon Catchment, Korea

  • Birhanu, Dereje;Kim, Hyeon Jun;Jang, Cheol Hee;ParkYu, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.243-243
    • /
    • 2015
  • Low-flow simulation and forecasting is one of the emerging issues in hydrology due to the increasing demand of water in dry periods. Even though low-flow simulation and forecasting remains a difficult issue for hydrologists better simulation and earlier prediction of low flows are crucial for efficient water management. The UN has never stated that South Korea is in a water shortage. However, a recent study by MOLIT indicates that Korea will probably lack water by 4.3 billion m3 in 2020 due to several factors, including land cover and climate change impacts. The two main situations that generate low-flow events are an extended dry period (summer low-flow) and an extended period of low temperature (winter low-flow). This situation demands the hydrologists to concentrate more on low-flow hydrology. Korea's annual average precipitation is about 127.6 billion m3 where runoff into rivers and losses accounts 57% and 43% respectively and from 57% runoff discharge to the ocean is accounts 31% and total water use is about 26%. So, saving 6% of the runoff will solve the water shortage problem mentioned above. The main objective of this study is to present the hydrological modelling approach for low-flow simulation and forecasting using a model that have a capacity to represent the real hydrological behavior of the catchment and to address the water management of summer as well as winter low-flow. Two lumped hydrological models (GR4J and CAT) will be applied to calibrate and simulate the streamflow. The models will be applied to Seolmacheon catchment using daily streamflow data at Jeonjeokbigyo station, and the Nash-Sutcliffe efficiencies will be calculated to check the model performance. The expected result will be summarized in a different ways so as to provide decision makers with the probabilistic forecasts and the associated risks of low flows. Finally, the results will be presented and the capacity of the models to provide useful information for efficient water management practice will be discussed.

  • PDF