• Title/Summary/Keyword: Land registration

Search Result 114, Processing Time 0.025 seconds

A Study on the Locational and Spatial Characteristics of Lotus Ponds of Fortress Wall of Seoul(漢陽都城) during the Joseon Dynasty (조선시대 한양도성 연지(蓮池)의 입지 및 공간적 특성 고찰)

  • Gil, Ji-Hye;Son, Yong-Hoon;Hwang, Kee-Won
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.4
    • /
    • pp.38-51
    • /
    • 2015
  • In the maps of the period, there were three large ponds called Dongji(東池), Seoji(西池) and Namji(南池) in Hanyang, the capital of Joseon Dynasty. They were different than the ponds found in the palace, civic buildings, and private dwellings. Dongji, Seoji and Namji were ponds relating to Fortress wall of Seoul, and all had lotuses cultivated in them. The purpose of this paper is to clarify the locational and spatial characteristics of these ponds and to detail the construction and reconstruction process and management conditions through maps, drawings, illustrations, historical records and literary works from the urban environmental perspective. The results are as follows. First, Seoji and Namji were intended for Bibo(裨補) which redeemed the geographical weaknesses of Hanyang, securement of bright court water(明堂水), supplement for fire energy(火氣), fire preventive water and waterscape facilities, while Dongji was emphasized on protecting water mouth(水口) besides Bibo and securement of bright court water. Second, Seoji was connected to mountain streams and Dongji and Namji were to ditches. The ponds connected to ditches had been difficult to fill and maintain. Third, Seoji and Namji were in urban areas, whereas Dongji was in farmlands, and these locational differences had an influence on the use of ponds. Fourth, the shapes of ponds, in contrast to the ponds in palace and civic buildings, which were perfectly square, were either freeform or square with rounded edges. Fifth, lotus ponds could be maintained by continuous management polices, earth filling and reconstructing process were repeated during the Joseon Dynasty. The lotus ponds of Fortress Wall of Seoul which had managed over 500 years, were built in, in accordance with the tenets of Bibo pungsu geomancy; however as time passed, they were maintained not only as public open spaces, but also a cultural attraction for residents and visitors.

Assessment of Regional Nitrogen Loading of Animal Manure by Manure Units in Cheorwon-gun (분뇨단위 설정에 의한 철원군 지역의 가축분뇨 질소부하 평가)

  • Ryoo, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.45-56
    • /
    • 2012
  • This study was conducted to give basic information of the animal manure management by manure units determination for recycling farming in Cheorwon-gun. Manure units (MU) are used in the permitting, registration, and the environmental process because they allow equal standards for all animals based on manure nutrient production. An MU is calculated by multiplying the number of animals by manure unit factor for the specific type of animal. The manure unit factor for MU determination was determined by dividing amounts of manure N produced 80 kg N/year. Conversion to manure units is a procedure used to determine nutrient pollution equivalents among the different animal types. In this study, the manure unit factor based on nitrogen in Hanwoo, dairy cow, pig were 0.36, 0.8 0.105, respectively. The analysis of manure unit per ha shows that the N loading by MU is quite different by region. The nitrogen loading of manure unit (MU) per ha of cultivated land was the highest in the Galmal-eup on province with 2.4 MU/ha, which is higher than the appropriate level. The Seo-myeon province came next with 1.92 MU/ha. To be utilized as a valid program to build the recycling farming system, diverse measures shall be mapped out to properly determine manure units, evaluate N-loading and to properly manage their nutrient balance of each region.

Research on the Prototype Landscape of Former Donam SeoWon Located in YeonSan (연산 돈암서원(豚巖書院) 구지(舊址)의 원형경관 탐색)

  • Rho, Jae-Hyun;Choi, Jong-Hee;Shin, Sang-Sup;Lee, Won-Ho
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.14-22
    • /
    • 2012
  • The position, size and landscape of the former Donam SeoWon as well as the physical organization of the old site, are studied to extract data for the enhancement of the authenticity of Donam SeoWon since its registration as a world heritage site. The results are as follows. The 'Donam(豚巖)' encaved rock, the tombstone of teacher Sagye(沙溪), Kimjipsadang(金集祠堂), the head of the Gwangsan Kim family, the Sagye stream in front of them, and the Gyeryong and Daedun mountains in the distance are united in the former Donam SeoWon as landscape elements that clearly show the characteristics of the former site, which was called 'Donam-Wollim(豚巖園林).' Moreover Yangseongdangsipyoung(養性堂十詠), adds the garden elements of a medical herb field, twins pond, a bamboo forest, a school, and a peach field. On this site, one can also engage in activities that are related to the land and are closely related to Neo-Confucianism such as fish watching, conferencing, visit in seclusion(訪隱), looking for monks, and overseeing farming. The former site facing east is assumed to have Sau(祠宇) - Eungdodang(凝道堂) - Ipdeokmum(入德門) - Sanangru(山仰樓: estimated). Jeonsacheong seems to have been located to the left of the Sau area, Yangseongdang, which contained upper and lower twin lotus ponds, on the right and was surrounded by various plants. As it has been used as a lecture hall for the past 250 years, the former Donam SeoWon, located 1.8km away from the current area, must be preserved, and the landscape should be formed to establish the authenticity of Donam SeoWon.

Herbicidal Phytotoxicity under Adverse Environments and Countermeasures (불량환경하(不良環境下)에서의 제초제(除草劑) 약해(藥害)와 경감기술(輕減技術))

  • Kwon, Y.W.;Hwang, H.S.;Kang, B.H.
    • Korean Journal of Weed Science
    • /
    • v.13 no.4
    • /
    • pp.210-233
    • /
    • 1993
  • The herbicide has become indispensable as much as nitrogen fertilizer in Korean agriculture from 1970 onwards. It is estimated that in 1991 more than 40 herbicides were registered for rice crop and treated to an area 1.41 times the rice acreage ; more than 30 herbicides were registered for field crops and treated to 89% of the crop area ; the treatment acreage of 3 non-selective foliar-applied herbicides reached 2,555 thousand hectares. During the last 25 years herbicides have benefited the Korean farmers substantially in labor, cost and time of farming. Any herbicide which causes crop injury in ordinary uses is not allowed to register in most country. Herbicides, however, can cause crop injury more or less when they are misused, abused or used under adverse environments. The herbicide use more than 100% of crop acreage means an increased probability of which herbicides are used wrong or under adverse situation. This is true as evidenced by that about 25% of farmers have experienced the herbicide caused crop injury more than once during last 10 years on authors' nationwide surveys in 1992 and 1993 ; one-half of the injury incidences were with crop yield loss greater than 10%. Crop injury caused by herbicide had not occurred to a serious extent in the 1960s when the herbicides fewer than 5 were used by farmers to the field less than 12% of total acreage. Farmers ascribed about 53% of the herbicidal injury incidences at their fields to their misuses such as overdose, careless or improper application, off-time application or wrong choice of the herbicide, etc. While 47% of the incidences were mainly due to adverse natural conditions. Such misuses can be reduced to a minimum through enhanced education/extension services for right uses and, although undesirable, increased farmers' experiences of phytotoxicity. The most difficult primary problem arises from lack of countermeasures for farmers to cope with various adverse environmental conditions. At present almost all the herbicides have"Do not use!" instructions on label to avoid crop injury under adverse environments. These "Do not use!" situations Include sandy, highly percolating, or infertile soils, cool water gushing paddy, poorly draining paddy, terraced paddy, too wet or dry soils, days of abnormally cool or high air temperature, etc. Meanwhile, the cultivated lands are under poor conditions : the average organic matter content ranges 2.5 to 2.8% in paddy soil and 2.0 to 2.6% in upland soil ; the canon exchange capacity ranges 8 to 12 m.e. ; approximately 43% of paddy and 56% of upland are of sandy to sandy gravel soil ; only 42% of paddy and 16% of upland fields are on flat land. The present situation would mean that about 40 to 50% of soil applied herbicides are used on the field where the label instructs "Do not use!". Yet no positive effort has been made for 25 years long by government or companies to develop countermeasures. It is a really sophisticated social problem. In the 1960s and 1970s a subside program to incoporate hillside red clayish soil into sandy paddy as well as campaign for increased application of compost to the field had been operating. Yet majority of the sandy soils remains sandy and the program and campaign had been stopped. With regard to this sandy soil problem the authors have developed a method of "split application of a herbicide onto sandy soil field". A model case study has been carried out with success and is introduced with key procedure in this paper. Climate is variable in its nature. Among the climatic components sudden fall or rise in temperature is hardly avoidable for a crop plant. Our spring air temperature fluctuates so much ; for example, the daily mean air temperature of Inchon city varied from 6.31 to $16.81^{\circ}C$ on April 20, early seeding time of crops, within${\times}$2Sd range of 30 year records. Seeding early in season means an increased liability to phytotoxicity, and this will be more evident in direct water-seeding of rice. About 20% of farmers depend on the cold underground-water pumped for rice irrigation. If the well is deep over 70m, the fresh water may be about $10^{\circ}C$ cold. The water should be warmed to about $20^{\circ}C$ before irrigation. This is not so practiced well by farmers. In addition to the forementioned adverse conditions there exist many other aspects to be amended. Among them the worst for liquid spray type herbicides is almost total lacking in proper knowledge of nozzle types and concern with even spray by the administrative, rural extension officers, company and farmers. Even not available in the market are the nozzles and sprayers appropriate for herbicides spray. Most people perceive all the pesticide sprayers same and concern much with the speed and easiness of spray, not with correct spray. There exist many points to be improved to minimize herbicidal phytotoxicity in Korea and many ways to achieve the goal. First of all it is suggested that 1) the present evaluation of a new herbicide at standard and double doses in registration trials is to be an evaluation for standard, double and triple doses to exploit the response slope in making decision for approval and recommendation of different dose for different situation on label, 2) the government is to recognize the facts and nature of the present problem to correct the present misperceptions and to develop an appropriate national program for improvement of soil conditions, spray equipment, extention manpower and services, 3) the researchers are to enhance researches on the countermeasures and 4) the herbicide makers/dealers are to correct their misperceptions and policy for sales, to develop database on the detailed use conditions of consumer one by one and to serve the consumers with direct counsel based on the database.

  • PDF