• Title/Summary/Keyword: Land load

Search Result 470, Processing Time 0.023 seconds

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(III)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (III)-동력경운의 경사지 견인성능-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.35-61
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 \ulcorner \frac {W_z \ulcorner{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} \ulcorner W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2\ulcorner "'16\ulcorner. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta \ulcorner \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.l slope land to improved its performance.

  • PDF

Effect of a Hydrologic Similarity Unit and Storm Sewer Resolution on the SWMM Model Performance (수문학적 유사단위와 우수관망의 공간정밀도가 SWMM모형 성과에 미치는 영향)

  • Ha, Sung-Ryong;Lee, Kang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.79-90
    • /
    • 2006
  • The partitioning level of a catchment becomes an issue if the calculated results from different levels show the same performance regardless of the levels. This study aims to identify the proper processing level of spatial resolution for the SWMM model application in an urban area. Using GIS overlaying technique, the division of subcatchments as a hydrologic similarity unit (HSU) is achieved with a comprehensive consideration of surface slope conditions, flow directions of storm sewers, and current land cover situation. Three surface-sewer alternatives are made on the basis of three different levels of surface divisions as well as the number of sewer connections and used as runoff simulation fields for the application of SWMM. As the result, it is found that the effect of a spatial resolution on the surface runoff results is not significant. On the other hand, the accumulated pollution load from an unit subcatchment, which is built by aggregation of several unit subcatchments consisting of various land cover conditions is reduced through the deterioration of surface spatial resolution. Although overall runoff pattern and accumulated runoff are little affected by spatial resolution, the simulated runoff from sewer outlet shows slight difference at the peak appearance time. The gap between surface pollution load accumulated and it discharged from the sewer outlet in a surface-sewer alternative during runoff period is monitored but the level of error is less than 5-10% except the lowest spatial resolution case.

  • PDF

Analyses of Heating and Cooling load in Greenhouse of Protected Horticulture Complex in Taean (태안 시설원예단지의 온실 냉난방 부하 분석)

  • Suh, Won-Myung;Bae, Yong-Han;Heo, Hae-Jun;Kwak, Cheul-Soon;Lee, Suk-Gun;Lee, Jong-Won;Yoon, Yong-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.45-52
    • /
    • 2009
  • This study was conducted in the process that the basic plan of the formation of the thermal energy complex in the Iwon reclaimed land of Taean was being made. Targeting for the large-sized greenhouse to be made in this area, it examined the cooling and heating load and the amount of ventilation, and also analyzed the economic efficiency of heating. The research results are as per the below: The minimum ambient temperature of this area was measured on January 7, 2001, which was $-18.7^{\circ}C$, and the maximum ambient temperature of this area was measured on July 24, 1994, which was $36.7^{\circ}C$. The maximum heating load was 39,011 MJ/h, but the date when the maximum heating load was not consistent with the date when the minimum temperature was measured. The maximum cooling load was 88,562MJ/h, It was approximately 2.3 times of the maximum heating load, which was measured at 14:00 hours on September 4, 2000. The maximum amount of ventilation heat was 138,639MJ/h. Assuming the rate of solar heat use as 10%, 20%, 50%, and 100%, the total sum of cost-benefit would be ₩-193,450,000, ₩-634,930,000, ₩-3,372,960,000, and ₩-9,850,420,000, respectively 20 years later. The break-even point of the geothermal heat pump would be about 4 years for 10% use, about 3 years for 20% or 50% use, and approximately 6 years for 100% use. It was found that 50% use would be most advantageous. In case two systems are combined, the break-even point will be 10 years, 8 years, and 11 years respectively.

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(Ⅲ)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (Ⅲ)-동력경운의 경사지 견인성능-)

  • Song, Hyun Kap;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.34-34
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 ? \frac {W_z ?{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} ? W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2? "'16?. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta ? \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.

A Comparative Study on the Bearing Capacity of Dynamic Load Test and Static Load Test of PHC Bored Pile (PHC 매입말뚝의 동재하시험과 정재하시험의 지지력 비교·분석 연구)

  • Park, Jongbae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.9
    • /
    • pp.19-31
    • /
    • 2017
  • In case of USA, the drilled shaft and the driven pile in the field showed a good correlation in the analysis of the bearing capacity between the dynamic load test and the static load test. However, in Korea, we mainly install the bored pile, which is not widely used overseas and we tried to confirm the reliability of the dynamic load test on the bored pile, because many people questioned the reliability of it. In this study, load tests were carried out on PHC bored piles in LH field (Cheonan, Incheon, Uijeongbu), and the bearing capacity of the dynamic load test (EOID 7times, Restrike 7times) and the static load test (7times) were compared and analyzed. As a result, the average of the bearing capacity of the static load test was 27% higher than that of the dynamic load test (reliability : 0.73, coefficient of variation : 0.3). And the average of the bearing capacity of the static load test (Davisson) was 27% higher than that of the bearing capacity of the dynamic load test (Davisson) (reliability : 0.73, coefficient of variation : 0.2). To reduce the difference between the bearing capacity of the dynamic load test and the static load test, we proposed modified bearing capacity of dynamic load test (base bearing capacity of EOID + skin frictional force of restrike) and difference between the bearing capacities was reduced to 9% (reliability : 0.91, coefficient of variation : 0.2). And the coefficient of variation was reduced to 0.2 and the consistency of analysis increased.

Analysis on the characteristics of the earth pressure distribution induced by the integrated steel pipe-roof construction (일체형 강관 파이프루프 시공에 따른 주변 지반의 토압 분포 특성 분석)

  • Sim, Youngjong;Jin, Kyu-Nam;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.455-468
    • /
    • 2013
  • In recent, various types of steel pipe-roof methods, which is reinforced by mortar after propulsion of steel pipe into the ground, have been used for the construction of trenchless underpass. Integrated steel pipe-roof has flexural stiffness and can resist against overburden load and reduce the stress acting on the concrete underpass structures. Due to arching effect, vertical and horizontal stress distribution around the steel pipe-roof is changing. In this study, therefore, the characteristic of stress distribution around the underpass induced by the construction of integrated steel pipe-roof is investigated by using numerical method. To examine the soil-structure interaction, interface element is introduced. Results show that vertical stress acting on the concrete structure placing inside the steel pipe-roof is significantly reduced due to arching effect and flexural stiffness of integrated steel pipe-roof. Design load can be reduced and effective design of underpass will be available if the earth pressure reduction due to arching effect is considered in the design stage.

A Study on Operating Characteristics and Design Factors of Floating Photovoltaic Generating Facilities (수상태양광 발전시스템의 운영특성 및 설계요소에 관한 연구)

  • Kim, Hyun-Han;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1532-1539
    • /
    • 2017
  • The floating photovoltaic system is a new concept in the renewable energy technology. That is similar to land based photovoltaic technology except floating system. So the system needs buoyant objects, mooring, ect, besides modules and supports, and that is able to withstand in water level changes and wind strength. Therefore the floating photovoltaic system is much different from land photovoltaic system. K-water (Korea Water Resources Corporation) has been operating two floating photovoltaic system that's capacity is 100 kW and 500 kW respectively since in summer 2011 for commercial generation, and have construction project for 2,000 kW in Boryeong multipurpose Dam and other areas. Furthermore K-water was developing a tracking-type floating photovoltaic system at Daecheong multipurpose Dam and developed and installed an ocean floating photovoltaic demonstration plant at Sihwa Lake in October 2013 for R&D. In this paper, we introduce that structure of floating photovoltaic system include buoyant structure, mooring system and auxiliary device. Especially the rope which is in part of mooring should be always maintain tension under any water level. Also we explain about structure design concept to wind load in an every loading condition and a kind of structure materials and PV structure types used in water environment. Especially ocean floating PV system is affected by tidal current and typhoon. So there are considering the elements in design. Finally we compare with floating and land photovoltaic on power amount. As a result of that we verified the floating photovoltaic system is more about 6.6~14.2 % efficiency than a general land photovoltaic system.

Performance Evaluation of Trunked Land Mobile Radio System (Trunked Land Mobile Radio System의 트래픽 성능분석)

  • 이하철;김원균;이병섭
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.5
    • /
    • pp.431-441
    • /
    • 1997
  • In this paper, a performance evaluation method for the Trunked Land Mobile Radio System, so called TRS(Trunked Radio System), is presented. The proposed evaluation method employs LCD(Lost Call Delayed) system model and Erlang-C distribution. In this system, queues are used to hold call requests that are initally blocked. When a user attempts a call and a channel is not immediately available, the call request may be delayed until a channel becomes available. For evaluating system performance, therefore, the probability that any caller is delayed in the queue for a waiting time greater than t seconds is derived and simulated by using such parameters as total number of available channels, traffic load and average duration of a call. Furthermore, the performance of the message and the transmission trunked channel assignment strategies is compared. The performance simulation results show that transmission trunking is shown to be more efficient than message trunking.

  • PDF

A Study on Water Quality and Amount of Flowing at Nonpoint Source of Nairin Stream (내린천수계 비점오염원 오염물질 유출량조사)

  • Huh, In-Ryang;Park, Sung-Bin;Oh, Heung-Seok;Kim, Yeong-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.220-225
    • /
    • 2009
  • This study evaluates the water quality of the river near the alpine farmland in the upper Naerin stream, which is a typical stream of the upper Bukhan River with muddy water generation, by the flow examination, it aims to estimate the characteristics of nonpoint sources flowing out from the investigated area and figure out effective methods to reduce them. According to the result of water quality examination, the average BOD of the area not affected by the cultivated land among the areas of the upper Naerin River was 0.47mg/l, and total phosphorous was 0.007mg/l; thus, it maintained the cleanliness level of Ia. The average BOD of the area with the alpine farmland was 0.52mg/l, which was similar to the one of the non-cultivated land. But total phosphorous concentration was 0.023mg/l, which was more than three times higher than the area belonging to level II due to the effect of fertilizer ingredients discharged from the cultivated land. About the loadings of the investigated area generated from each of the pollution sources, BOD was 878.5kg/day and total phosphorous was 79.7kg/day. Moreover, for the load density, BOD was $2.22kg/day.km^2$ and total phosphorous was shown as $0.20kg/day.km^2$. Regarding the rates generated from nonpoint sources like land among the loadings per pollution sources, BOD was 54%, total nitrogen was 91%, and total phosphorous was 73.4%. Therefore, it was shown that most of the nutrients were produced from the nonpoint sources. The level of BOD runoff loading in the Jaun River area, where nonpoint sources were mainly generated, was 37.1kg/day and total phosphorous was 1.33kg/day. The flow rates to the generated amount were estimated as 10.5% and 4.7% each.

Water Quality Management System at Mok-hyun Stream Watershed Using RS and GIS

  • Lee, In-Soo;Lee, Kyoo-seock
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.63-69
    • /
    • 1999
  • The purpose of this study is to develop Water Quality Management System(WQMS), which performs calculating pollutant discharge and forecasting water quality with water pollution model. Operational water quality management requires not only controlling pollutants but acquiring and managing exact information. A GIS software, ArcView was used to enter or edit geographic data and attribute data, and MapObject was used to customize the user interface. PCI, a remote sensing software, was used for deriving land cover classification from 20 m resolution SPOT data by image processing. WQMS has two subsystems, Database Subsystem and Modelling subsystem. Database subsystem consisted of watershed data from digital map, remote sensing data, government reports, census data and so on. Modelling subsystem consisted of NSPLM(NonStorm Pollutant Load Model)-SPLM(Storm Pollutant Load Model). It calculates the amount of pollutant and predicts water quality. This two subsystem was connected through graphic display module. This system has been calibrated and verified by applying to Mokhyun stream watershed.

  • PDF