• Title/Summary/Keyword: Land based load

Search Result 149, Processing Time 0.026 seconds

A Study of GIS-based Estimation of Pollutant Loads in Accordance with Spatial Landuse Variation - Focussing on Wangsook Watershed - (토지이용의 공간적 다양성에 따른 GIS 기반 오염부하 산정에 관한 연구 - 왕숙천 유역을 중심으로 -)

  • Kim, Kyoung-Soon;Kim, Kye-Hyun;Kwon, Oh-Jun
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.5
    • /
    • pp.305-315
    • /
    • 2005
  • The scheme to classify pollution sources in Korean TMDL planning has been pointed out too much complex to implement practically because of requiring a wide range of items to be collected from a field. Within a deficient situation to collect field data, the mathematical scheme that focuses only on counting an uniform area ratio of the different land uses to estimate of pollutant loads from individual sub-catchments has been used without taking into account of the spatial characteristics of major land uses as well as the locations of pollution sources in each sub-catchment. It would cause to significant level of errors to estimate the pollution loads. Therefore, this study proposes a renovated scheme that can be adopted more easily to classify pollution sources in the watershed and reduce the estimation errors in the spatial distribution of pollution sources by introducing a spatial analysis based on digital land cover maps. In order to estimate a unit area to calculate the uniform pollution load, the pollution response unit area that is locating spatially at the same place and having same land use is identified through the application of GIS overlay technique. Unlikely existing conventional method to calculate the pollution load based on equal distribution of pollutants for each administrative boundary, it is assumed that the pollution load from household and livestock sources are generated and washed off from only residential areas. While, pollution from business population comes from commercial area and industrial load from wastewater discharge facilities are from industrial areas. From comparison of the calculated results from the existing the method and the proposed one, it is found that although the estimation of pollution load from sub-catchment in the case of the existing conventional method application results in negligible difference in total pollution amounts from the whole area of Wangsook watershed as a study area, significant difference of pollution load among sub-catchment in which pollution response unit areas are diverse, however, appears in the case of the application of the renovated scheme.

Analysis of Pollutants Discharge due to the Change of Impervious Land in Urban Area Using Watershed Model (유역모형을 이용한 도시지역의 불투수면 변화에 따른 오염물질 유출 해석)

  • Gong, Seok Ho;Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.1
    • /
    • pp.73-82
    • /
    • 2018
  • The purpose of this study is the evaluation of the impact of increase in impervious areas due to urbanization on the pollutant discharge using the HSPF model at Musim watershed. Model calibration and validation were performed based on the observed data 2015 and 2014, all simulation items have been successfully simulated such as flow, BOD, and TP. The land cover map used in the model reflected on the land use status of the Musim watershed in 2015 and the application of the development areas and locations. As a result of simulation, during rainfall daily pollutant load with the increased impervious land increased more than that before the development. However, the pollutant load decreased during the non-rainfall time. Annual pollutant load in rainfall time was significantly higher than that in non-rainfall time, BOD and TP increased. The simulation of non-point source pollutant load was applied under two assumptions, such as the increased area of impervious land and the non-change number of point source load before and after development. As the result of a simulation, the non-point source pollutant load after development was bigger than those before development. It was necessary to take measures to control non-point source pollution at the consideration status of development.

Summer Water Quality Management by Ecological Modelling in Ulsan Bay (생태계 모델을 이용한 울산만의 하계 수질관리)

  • Park, Sung-Eun;Hong, Sok-Jin;Lee, Won-Chan;Jung, Rae-Hong;Cho, Yoon-Sik;Kim, Hyung-Chul;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Numerical study on coastal water quality management was conducted to examine the response of summer water quality to the flow into the sea of land based pollution load in Ulsan Bay, Korea The abatement of pollution load. from point sources of land was estimated on the basis of Korean coastal water quality standard using an ecosystem model. The results of the ecological model simulation showed that COD values in the inner part of the bay were greater than 280mg/L, and exceeded the grade III limit of Korean coastal water quality standard 30% of all land based pollution loads or organic and inorganic material loads from point sources should be cut down to keep the COD levels below 2mg/L. As environmental carrying capacity was estimated to be 7,193kgCOD/day to keep the COD levels below 2mg/L in Ulsan Bay, 3,083kgCOD/day of land based organic loads should be reduced. The phytoplankton blooms have occurred in the Teahwa river mouth or estuary repetitively, so it is important to control land based nutrients loads for removal of autochthonous organic loads around Ulsan Bay.

A Study on the Land Purchase Priority Measurement of the Riparian Areas in Yeongsan and Seomjin River Basin - Focusing on the Riparian Areas of the Juam Lake - (영산강·섬진강수계 수변구역 토지매수 우선순위 산정에 관한 연구 -주암호 수변구역을 사례로 -)

  • Shim, Yun-Jin;Cha, Jin-Yeol;Park, Yong-Su;Lee, Dong-Jin;Seo, Yun-Hee;Hong, Jin-Pyo;Cho, Dong-Gil
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.173-184
    • /
    • 2014
  • Riparian areas are significant functional grounds for inhabiting ecological system on the river such as the self-regulation of the water quality and the foundation of important corridors. For such functional device to operate, consecutive land purchase scheme that prioritizes targeted areas with high pollutant load rate imposes sustainable development of the ecological riparian belt. The purpose of this study is focused on measuring the methodology for selecting land purchse order before establishing riparian belt in accordance with pollution loading estimation and the basin approach. The Yeongsan and Seomjin river which includes targeted areas of the land purchase have been classified into the large-medium-small(standard basin) influence areas based on their catchment rage, which than sub-divided the research area of Juam lake by 38 small basins and 223 units. Small basins with the high pollution load rates have been assessed as the first prioritized targets. For the second priority, the condition of the point pollutant sources, original area of the targets, original restored area were concerned. The final decision of the land purchase order targeted only those within 50 meter range from the basin. To validate the accumulated data, the on-site investigation went along the targeted zones, which the result shows that all prioritized areas included both point and non-point pollutant sources, and had not a small originally restored areas.

A study on water quality change by land use change using HSPF

  • Kim, Tae Geun;Choi, Kyoung-sik
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.123-128
    • /
    • 2020
  • Non-point source pollutant load reductions were calculated using the Hydrologic Simulation Program-Fortran (HSPF) model under the assumption that landuse pattern was changed according to land purchases. Upon the simulation of non-point pollutant and areas with high land purchase ratios to select a buffer zone, the Namgang dam Reach 11, Imha dam Reach 10, and the Reach 136 watershed of the main river were found to rank high for the construction of buffer zones. Assuming that the forms of the purchased lands were changed to wetlands, biological oxygen demand (BOD) loads were changed through the HSPF model. No changes of BOD were present in the Namgang dam and the Imha dam watersheds. BOD loads in Reach 136 according to landuse change were analyzed through a flow duration analysis based on the total maximum daily loads of the United States. The flow duration analyses undertaken to examine changes in BOD of main river Reach 136 watershed indicated a shift of 0.64 kg/d from 3.16 to 2.52 during high flow. The change of BOD under the conditions of moist, mid-range and dry were 11.9%, 9% and 4.5%. At the low flow condition, the variation range in the BOD load was from 0.58 kg/d to 0.41 kg/d.

Modeling for Pollution Contribution Rate of Land based Load in Masan Bay (마산만 육상기인오염원의 오염기여율 모델링)

  • Jung, Woo-Sung;Hong, Sok-Jin;Lee, Won-Chan;Kim, Hyung-Chul;Kim, Jin-ho;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.59-66
    • /
    • 2016
  • Pollution contribution rate that is effect on water quality from land based load in Masan bay was showed quantifiably for coastal water quality management by using ecological model. It was calculated by difference of water quality concentration at each points t hat is calculated by each scenarios that are presence or absence of each sources (16 points). Results show that, rivers of Northern Masan bay contributed in Masan bay COD is 20 %, T-P is 62 % at northern part and COD is 10 %, T-P is 16 % at middle part. As a result, rivers of Northern Masan bay had effect on water quality of northern Masan bay and middle Masan bay. Also, T-P load affects water quality bigger than COD load, because T-P contribution rate bigger than COD contribution rate of northern rivers. Dukdong WTTP that is land pollution source of southern Masan bay contributed in Masan bay COD is 26 %, T-P is 11% at middle part, COD is 17 %, T-P is 7 % at middle part and COD is 10 %, T-P is 1 % at outer part. It affects water quality bigger at southern and middle of Masan bay than outer bay, because residual flow of bottom flows toward inner of Masan bay nearby Dukdong WTTP.

A Multiagent-Based Hybrid Power Control and Management of Distributed Power Sources

  • Yoon, Gi-Gab;Hong, Won-Pyo;Lee, Ki-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.70-81
    • /
    • 2011
  • In this paper, a multi-agent control system for DC-coupled photovoltaic (PV), fuel cell (FC), ultracapacitor(UC) and battery hybrid power system is studied for commercial buildings & apartment buildings microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. A multi-agent system based-power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build the multi-agent control system with pragmatic design, and a dynamic model proposed for a PV/FC/UC/battery bank hybrid power generation system. A dynamic simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Stateflow. Simulation results are also presented to demonstrate the effectiveness of the proposed multi-agent control and management system for building microgrid.

Estimation of Pollutants Loading from Non-Point Sources Based on Rainfall Event and Land use Characteristics (강우강도와 토지이용을 고려한 비점오염물질 부하량 산정에 관한 연구)

  • Lee, Hye-Won;Choi, Nam-Hee;Lee, Yong-Seok;Choi, Jung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.572-577
    • /
    • 2011
  • The unit load has simply been used to estimate total pollutant loading from non-point sources, however, it does not count on the variable pollutant loading according to land use characteristics and rainfall intensity. Since pollutant emission from the watershed is strongly dependent on the rainfall intensity, it is necessary to find out the relationship between pollutant loading and rainfall intensity. The objective of this study is to develop simple and easy method to compute non-point source pollution loads with consideration of rainfall intensity. Two non-point source removal facility at Gyeongan-dong (Gwangju-si) and Mohyeon-myeon (Yongin-si), Gyeonggi-do was selected to monitor total rainfall, rainfall intensity, runoff characteristics and water quality from June to November, 2010. Most of Event Mean Concentrations (EMC) of measured water quality data were higher in Gyeongan which has urban land use than in Mohyeon which has rural land use. For the case of TP (Total Phosphorus), Mohyeon has higher values by the influence of larger chemical uses such as fertilizer. The relationship between non-point source pollution load and rainfall intensity is perfectly well explained by cubic regression with 0.33~0.81 coefficients of determination($R^2$). It is expected that the pollution loading function based on the long-term monitoring would be very useful with good accuracy in computing non-point source pollution load, where a rainfall intensity is highly variable.

Assessing unit load in farmland by application of liquid manure and organic farming (액비 및 유기농법 적용에 따른 농경지에서의 오염부하 원단위 평가)

  • So, Hyunchul;Jang, Taeil;Hong, Seung-Gil
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.4
    • /
    • pp.39-48
    • /
    • 2017
  • National Institute of Environmental Research (NIER) has proposed new methodology for estimating unit load in order to overcome the limitations of past unit load based on short-term and local area based data. In the case of agricultural land, however, the results presented by NIER are still limited because of various agricultural activities and farmland characteristics. In this study, liquid manure treated paddy field and organic farming upland were selected for considering agricultural diversity. Four different methods for evaluating unit load were used for comparing previous research results. The results of different methods presented various trends compared with those of existing studies. Paddy field treated liquid manure was 1.3 times higher for T-N load and 3.1 times for T-P load than conventional paddy field. Conventional upland was 4.4 times higher for T-N load and 1.8 times higher for T-P load than organic farming upland. In the case of non-conventional farmland, this study showed different values with the unit loads presented by NIER. This implies that it is necessary to review and apply the unit loads considering various agricultural conditions when establishing environmental policy and rural planning.