• Title/Summary/Keyword: Land Surface model

Search Result 567, Processing Time 0.04 seconds

Impact of assimilating the terrestrial water storage on the water and carbon cycles in CLM5-BGC

  • Chi, Heawon;Seo, Hocheol;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.204-204
    • /
    • 2021
  • Terrestrial water storage (TWS) includes all components of water (e.g., surface water, groundwater, snow and ice) over the land. So accurately predicting and estimating TWS is important in water resource management. Although many land surface models are used to predict the TWS, model output has errors and biases in comparison to the observation data due to the model deficiencies in the model structure, atmospheric forcing datasets, and parameters. In this study, Gravity Recovery And Climate Experiment (GRACE) satelite TWS data is assimilated in the Community Land Model version 5 with a biogeochemistry module (CLM5.0-BGC) over East Asia from 2003 to 2010 by employing the Ensemble Adjustment Kalman Filter (EAKF). Results showed that TWS over East Asia continued to decrease during the study period, and the ability to simulate the surface water storage, which is the component of the CLM derived TWS, was greatly improved. We further investigated the impact of assimilated TWS on the vegetated and carbon related variables, including the leaf area index and primary products of ecosystem. We also evaluated the simulated total ecosystem carbon and calculated its correlation with TWS. This study shows that how the better simulated TWS plays a role in capturing not only water but also carbon fluxes and states.

  • PDF

SST Effect upon Numerical Simulation of Atmospheric Dispersion (대기확산의 수치모의에서 SST 효과)

  • 이화운;원경미;조인숙
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.767-777
    • /
    • 1999
  • In the coastal region air flow changes due to the abrupt change of surface temperature between land and sea. So a numerical simulation for atmospheric flow fields must be considered the correct fields of sea surface temperature(SST). In this study, we used variables such as latent heat flux, sensible heat flux, short and long wave radiation of ocean and atmosphere which exchanged across the sea surface between atmosphere and ocean model. We found that this consideration simulated the more precise SST fields by comparing with those of the observated results. Simulated horizontal SST differences in season were 2.5~4$^{\circ}C$. Therefore we simulated the more precise atmospheric flow fields and the movement and dispersion of the pollutants with the Lagrangian particle dispersion model. In the daytime dispersion pattern of the pollutants emitted from ship sources moved toward inland, in the night time moved toward sea by land/sea breeze criculation. But air pollutants dispersion can be affected by inland topography, especially Yangsan and coastal area because of nocturnal wind speed decrease.

  • PDF

Characteristics of Soil Moisture Distributions at the Spatio-Temporal Scales Based on the Land Surface Features Using MODIS Images (MODIS 이미지를 이용한 지표특성에 따른 토양수분의 시·공간적 분포 특성)

  • Kim, Sangwoo;Shin, Yongchul;Lee, Taehwa;Lee, Sang-Ho;Choi, Kyung-Sook;Park, Younshik;Lim, Kyoungjae;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.29-37
    • /
    • 2017
  • In this study, we analyzed the impacts of land surface characteristics on spatially and temporally distributed soil moisture values at the Yongdam and Soyang-river dam watersheds in 2014 and 2015. The soil moisture, NDVI (Normalized Difference Vegetation Index) and temperature values at the spatio-temporal scales were estimated using satellite-based MODIS (MODerate Resolution Imaging Spectroradiometer) products. Then the Pearson correlations between soil moisture and land surface characteristics (NDVI, temperature and DEM-digital elevation model) were estimated and analyzed, respectively. Overall, the monthly soil moisture values at the time step were highly influenced by the precipitation amounts. Also, the results showed that the soil moisture has the strong correlation with DEM while the temperature was inversely correlated with the soil moisture. However the monthly correlations between NDVI and soil moisture were highly varied along the time step. These findings indicated that water loss near the land surface are highly occurred by soil and plant activities as evapotranspiration and infiltration during the no/less precipitation period. But the high precipitation amounts reduce the impacts of land surface characteristics because of saturated condition of land surface. Thus these results demonstrated that soil moisture values are highly correlated with land surface characteristics. Our findings can be useful for water resources/environmental management, agricultural drought, etc.

Surface Temperature Retrieval from MASTER Mid-wave Infrared Single Channel Data Using Radiative Transfer Model

  • Kim, Yongseung;Malakar, Nabin;Hulley, Glynn;Hook, Simon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.151-162
    • /
    • 2019
  • Surface temperature has been derived from the MODIS/ASTER airborne simulator (MASTER) mid-wave infrared single channel data using the MODerate resolution atmospheric TRANsmission (MODTRAN) radiative transfer model with input data including the University of Wisconsin (UW) emissivity, the National Centers for Environmental Prediction (NCEP) atmospheric profiles, and solar and line-of-sight geometry. We have selected the study area that covers some surface types such as water, sand, agricultural (vegetated) land, and clouds. Results of the current study show the reasonable geographical distribution of surface temperature over land and water similar to the pattern of the MASTER L2 surface temperature. The thorough quantitative validation of surface temperature retrieved from this study is somehow limited due to the lack of in-situ measurements. One point comparison at the Salton Sea buoy shows that the present estimate is 1.8 K higher than the field data. Further comparison with the MASTER L2 surface temperature over the study area reveals statistically good agreement with mean differences of 4.6 K between two estimates. We further analyze the surface temperature differences between two estimates and find primary factors to be emissivity and atmospheric correction.

Radiometric Characteristics of Geostationary Ocean Color Imager (GOCI) for Land Applications

  • Lee, Kyu-Sung;Park, Sung-Min;Kim, Sun-Hwa;Lee, Hwa-Seon;Shin, Jung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.277-285
    • /
    • 2012
  • The GOCI imagery can be an effective alternative to monitor short-term changes over terrestrial environments. This study aimed to assess the radiometric characteristics of the GOCI multispectral imagery for land applications. As an initial approach, we compared GOCI at-sensor radiance with MODIS data obtained simultaneously. Dynamic range of GOCI radiance was larger than MODIS over land area. Further, the at-sensor radiance over various land surface targets were tested by vicarious calibration. Surface reflectance were directly measured in field using a portable spectrometer and indirectly derived from the atmospherically corrected MODIS product over relatively homogeneous sites of desert, tidal flat, bare soil, and fallow crop fields. The GOCI radiance values were then simulated by radiative transfer model (6S). In overall, simulated radiance were very similar to the actual radiance extracted from GOCI data. Normalized difference vegetation index (NDVI) calculated from the GOCI bands 5 and 8 shows very close relationship with MODIS NDVI. In this study, the GOCI imagery has shown appropriate radiometric quality to be used for various land applications. Further works are needed to derive surface reflectance over land area after atmospheric correction.

Numerical Analysis of Wind Driven Current and Mesoscale Air Flow in Coastal Region with Land Topography (육상지형을 고려한 연안해역에서의 중규모 기상장과 취송류에 관한 수치해석)

  • Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.23-29
    • /
    • 2006
  • A quasi depth-varying mathematical model for wind-generated circulation in coastal areas, expressed in terms of the depth-averaged horizontal velocity components and free surface elevation was validated and used to understand the diurnal circulation process. The wind velocity is considered as a dominant factor for driving the current. In this paper, three-dimensional numerical experiments that included the land topography were used to investigate the mesoscale air flaw over the coastal regions. The surface temperature of the inland area was determined through a surface heat budget consideration with the inclusion of a layer of vegetation.A series of numerical experiments were then carried out to investigate the diurnal response of the air flaw and wind-generated circulation to various types of surface inhomogeneities.

Estimating Optimal Potential Surface for Spatial Expansion of Built-up Area by Formulating WSM-AHP Method (WSM-AHP법의 정식화를 통한 주거지 확산 지역의 최적 잠재력 표면의 추정)

  • Kim, Dae-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.3
    • /
    • pp.91-104
    • /
    • 2008
  • This study developed the WSM (weighted scenario method)-AHP method that can optimize the weighting value for multi-criteria to make GIS grid-based potential surface. The potential surface has been used to simulate urban expansion using distributed cellular automata model and to generate land-use planning as basic data. This study formulated the WSM-AHP method in mathematically and applied to test region, Suwon city, which located on south area from Seoul. WSM-AHP method generates potential map for each pair of weighting value for all criteria, which one criterion is weighted with high weighting value and the others use low weighting value, considering that the summation for all criteria weighting values should be "1". The potential change rate to the step of weighted scenario for weighting value of criteria is standardized like AHP intensity matrix in this study. From the standard potential change rate, WSM-AHP intensity matrix is completed, and then the optimal weighting value is calculated from the maximum eigenvector of the WSM-AHP matrix, according to the new WSM-AHP method developed in this study. The applied results of new method showed that the optimal weighting value from WSM-AHP is more resonable than the general AHP specialists' evaluation for weighting value. The another new finding of this study is to suggest the deterministic approach to optimize the weighting value for the distributed CA model, which is used to find new city area and to generate rational land-use planning.

Numerical Simulation of Effect on Atmospheric Flow Field by Development of Coastal Area (임해지역의 개발이 기상장에 미치는 영향예측)

  • Lee, Sang-Deug;Mun, Tae-Ryong
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.919-928
    • /
    • 2006
  • The present study applied an atmospheric flow field model in Gwangyang-Bay which can predict local sea/land breezes formed in a complex terrain lot the development of a model that can predict short term concentration of air pollution. Estimated values from the conduct of the atmospheric flow field were used to evaluate and compare with observation data of the meteorological stations in Yeosu and the Yeosu airport, and the effect of micrometeorology of surround region by the coastal area reclamation was predicted by using the estimated values, Simulation results, a nighttime is appeared plainly land breezes of the Gwangyang-bay direction according to a mountain wind that formed in the Mt. of Baekwooun, Mt. of Youngchui. Land winds is formed clockwise circulation in the north, clockwise reverse direction in the south with Gangyang-bay as the center. Compared with model and observation value, Temperature is tend to appeared some highly simulation value in the night, observation value in the daytime in two sites all, but it is veil accorded generally, the pattern of one period can know very the similarity. And also, wind speed and wind direction is some appeared the error of observation value and calculation results in crossing time of the land wind and sea land, it can see that reproducibility is generally good, is very appeared the change land wind in the nighttime, the change of sea wind in the daytime. And also, according to change of the utilization coefficient of soil before and after development with Gwangyang-Bay area as the center. Temperature after development was high $0.55\sim0.67^{\circ}C$ in the 14 hoots, also was tend to appear lowly $0.10\sim0.22^{\circ}C$ in the 02 hours, the change of u, v component is comparatively tend to reduced sea wind and land wind, it is affected ascending air current and frictional power of the earth surface according to inequality heating of the generation of earth surface.

Reassessment on SEBAL Algorithm and MODIS Products

  • Uranchimeg, Sumiya;Kwon, Hyun-Han;Kim, Hyun-Mook;Kim, Yun-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.230-230
    • /
    • 2016
  • Hydrological modeling is a very complex task dealing with multi-source of data, but it can be potentially benefited from recent improvements and developments in remote sensing. The estimation of actual land surface evapotranspiration (ET), an important variable in water management, has become possible based entirely on satellite data. This study adopted a Surface Energy Balance Algorithm for Land (SEBAL) with the use of MODerate Resolution Imaging Spectrometer (MODIS) satellite products. The SEBAL model is one of the commonly used approach for the ET estimation. A primary advantage of the SEBAL model is rather its minimum requirement for ground-based weather data. The MODIS provides ET (MOD16) product that is based on the Penman-Monteith equation. This study aims to further develop the SEBAL model by employing a more rigorous parameterization scheme including the estimation of uncertainty associated with parameter and model selection in regression model. Finally, the proposed model is compared with the existing approaches and comprehensive discussion is then provided.

  • PDF

A Numerical Study of Mesoscale Model Initialization with Data Assimilation

  • Min, Ki-Hong
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.342-353
    • /
    • 2014
  • Data for model analysis derived from the finite volume (fv) GCM (Goddard Earth Observing System Ver. 4, GEOS-4) and the Land Data Assimilation System (LDAS) have been utilized in a mesoscale model. These data are tested to provide initial conditions and lateral boundary forcings to the Purdue Mesoscale Model (PMM) for a case study of the Midwestern flood that took place from 21-23 May 1998. The simulated results with fvGCM and LDAS soil moisture and temperature data are compared with that of ECMWF reanalysis. The initial conditions of the land surface provided by fvGCM/LDAS show significant differences in both soil moisture and ground temperature when compared to ECMWF control run, which results in a much different atmospheric state in the Planetary Boundary Layer (PBL). The simulation result shows that significant changes to the forecasted weather system occur due to the surface initial conditions, especially for the precipitation and temperature over the land. In comparing precipitation, moisture budgets, and surface energy, not only do the intensity and the location of precipitation over the Midwestern U.S. coincide better when running fvGCM/LDAS, but also the temperature forecast agrees better when compared to ECMWF reanalysis data. However, the precipitation over the Rocky Mountains is too large due to the cumulus parameterization scheme used in the PMM. The RMS errors and biases of fvGCM/LDAS are smaller than the control run and show statistical significance supporting the conclusion that the use of LDAS improves the precipitation and temperature forecast in the case of the Midwestern flood. The same method can be applied to Korea and simulations will be carried out as more LDAS data becomes available.