• Title/Summary/Keyword: Land Remote Sensing

Search Result 1,071, Processing Time 0.025 seconds

Analysis of Micro-Sedimentary Structure Characteristics Using Ultra-High Resolution UAV Imagery: Hwangdo Tidal Flat, South Korea (초고해상도 무인항공기 영상을 이용한 한국 황도 갯벌의 미세 퇴적 구조 특성 분석)

  • Minju Kim;Won-Kyung Baek;Hoi Soo Jung;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.295-305
    • /
    • 2024
  • This study aims to analyze the micro-sedimentary structures of the Hwangdo tidal flats using ultra-high resolution unmanned aerial vehicle (UAV) data. Tidal flats, located in the transitional area between land and sea, constantly change due to tidal activities and provide a unique environment important for understanding sedimentary processes and environmental conditions. Traditional field observation methods are limited in spatial and temporal coverage, and existing satellite imagery does not provide sufficient resolution to study micro-sedimentary structures. To overcome these limitations, high-resolution images of the Hwangdo tidal flats in Chungcheongnam-do were acquired using UAVs. This area has experienced significant changes in its sedimentary environment due to coastal development projects such as sea wall construction. From May 17 to 18, 2022, sediment samples were collected from 91 points during field surveys and 25 in-situ points were intensively analyzed. UAV data with a spatial resolution of approximately 0.9 mm allowed identifying and extracting parameters related to micro-sedimentary structures. For mud cracks, the length of the major axis of the polygons was extracted, and the wavelength and ripple symmetry index were extracted for ripple marks. The results of the study showed that in areas with mud content above 80%, mud cracks formed at an average major axis length of 37.3 cm. In regions with sand content above 60%, ripples with an average wavelength of 8 cm and a ripple symmetry index of 2.0 were formed. This study demonstrated that micro-sedimentary structures of tidal flats can be effectively analyzed using ultra-high resolution UAV data without field surveys. This highlights the potential of UAV technology as an important tool in environmental monitoring and coastal management and shows its usefulness in the study of sedimentary structures. In addition, the results of this study are expected to serve as baseline data for more accurate sedimentary facies classification.

Evaluation of satellite-based evapotranspiration and soil moisture data applicability in Jeju Island (제주도에서의 위성기반 증발산량 및 토양수분 적용성 평가)

  • Jeon, Hyunho;Cho, Sungkeun;Chung, Il-Moon;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.835-848
    • /
    • 2021
  • In Jeju Island which has peculiarity for its geological features and hydrology system, hydrological factor analysis for the effective water management is necessary. Because in-situ hydro-meteorological data is affected by surrounding environment, the in-situ dataset could not be the spatially representative for the study area. For this reason, remote sensing data may be used to overcome the limit of the in-situ data. In this study, applicability assessment of MOD16 evapotranspiration data, Globas Land Data Assimilation System (GLDAS) based evapotranspiration/soil moisture data, and Advanced SCATterometer (ASCAT) soil moisture product which were evaluated their applicability on other study areas was conducted. In the case of evapotranspiration, comparison with total precipitation and flux-tower based evapotranspiration were conducted. And for soil moisture, 6 in-situ data and ASCAT soil moisture product were compared on each site. As a result, 57% of annual precipitation was calculated as evapotranspiration, and the correlation coefficient between MOD16 evapotranspiration and GLDAS evapotranspiration was 0.759, which was a robust value. The correlation coefficient was 0.434, indicating a relatively low fit. In the case of soil moisture, in the case of the GLDAS data, the RMSE value was less than 0.05 at all sites compared to the in-situ data, and a statistically significant result was obtained as a result of the significance test of the correlation coefficient. However, for satellite data, RMSE over than 0.05 were found at Wolgak and there was no correlation at Sehwa and Handong points. It is judged that the above results are due to insufficient quality control and spatial representation of the evapotranspiration and soil moisture sensors installed in Jeju Island. It is estimated as the error that appears when adjacent to the coast. Through this study, the necessity of improving the existing ground observation data of hydrometeorological factors is emphasized.

Comparison of ASTER Satellite and Ground-Based Surface Temperature Measurements for Urban Heat Island Studies (도시열섬연구를 위한 ASTER 위성영상과 지표면의 표면온도 비교)

  • Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.104-124
    • /
    • 2017
  • This study aimed to validate the ASTER surface temperature using field measurements over various land use types in the urban area of Changwon City, South Korea. The ASTER surface temperature was measured by collecting eight images during daytime and nighttime in June and September from 2012 to 2014, and field measurements were conducted over the same period when the satellite images were taken. The analyses showed that the surface temperature measured in the field during the daytime was higher than that of satellite imageries by $5{\sim}10^{\circ}C$, and the gap was higher in built-up areas. The calibration models of surface temperature showed a 60% explanatory power in areas other than parks, indicating that the models are reliable. During nighttime, except for the summer month of August, ASTER surface temperature was determined to be approximately $2^{\circ}C$ higher in contrast to daytime.

Non-point Source Critical Area Analysis and Embedded RUSLE Model Development for Soil Loss Management in the Congaree River Basin in South Carolina, USA

  • Rhee, Jin-Young;Im, Jung-Ho
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.363-377
    • /
    • 2006
  • Mean annual soil loss was calculated and critical soil erosion areas were identified for the Congaree River Basin in South Carolina, USA using the Revised Universal Soil Loss Equation (RUSLE) model. In the RUSLE model, the mean annual soil loss (A) can be calculated by multiplying rainfall-runoff erosivity (R), soil erodibility (K), slope length and steepness (LS), crop-management (C), and support practice (P) factors. The critical soil erosion areas can be identified as the areas with soil loss amounts (A) greater than the soil loss tolerance (T) factor More than 10% of the total area was identified as a critical soil erosion area. Among seven subwatersheds within the Congaree River Basin, the urban areas of the Congaree Creek and the Gills Creek subwatersheds as well as the agricultural area of the Cedar Creek subwatershed appeared to be exposed to the risk of severe soil loss. As a prototype model for examining future effect of human and/or nature-induced changes on soil erosion, the RUSLE model customized for the area was embedded into ESRI ArcGIS ArcMap 9.0 using Visual Basic for Applications. Using the embedded model, users can modify C, LS, and P-factor values for each subwatershed by changing conditions such as land cover, canopy type, ground cover type, slope, type of agriculture, and agricultural practice types. The result mean annual soil loss and critical soil erosion areas can be compared to the ones with existing conditions and used for further soil loss management for the area.

  • PDF

Wind Field Estimation Using ERS-1 SAR Data: The Initial Report

  • Won, Joong-Sun;Jeong, Hyung-Sup;Kim, Tae-Rim
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.286-291
    • /
    • 1998
  • SAR has provided weather independent images on land and sea surface, which can be used for extracting various useful informations. Recently attempts to estimate wind field parameters from SAR images over the oceans have been made by various groups over the world. Although scatterometer loaded in ERS-1 and ERS-2 observes the global wind vector field at spatial resolution of 50 Km with accuracies of $\pm$2m/s in speed, the spatial resolution may not be good enough for applications in coastal regions. It is weil known the sea surface roughness is closely correlated to the wind field, but the wind retrieval algorithms from SAR images are yet in developing stage. Since the radar backscattering properties of the SAR images are principally the same as that of scatterometer, some previous studies conducted by other groups report the success in mesoscale coastal wind field retrievals using ERS SAR images. We have tested SWA (SAR Wind Algorithm) and CMOD4 model for estimation of wind speed using an ERS-1 SAR image acquired near Cheju Island, Korea, in October 11, 1994. The precise estimation of sigma nought and the direction of wind are required for applying the CMOD4 model to estimate wind speed. The wind speed in the test sub-image is estimated to be about 10.5m/s, which relatively well agrees to the observed wind speed about 9.0m/s at Seoguipo station. The wind speed estimation through the SWA is slightly higher than that of CMOD4 model. The sea surface condition may be favorable to SWA on the specific date. Since the CMOD4 model requires either wind direction or wind speed to retrieve the wind field, we should estimate the wind speed first using other algorithm including SWA. So far, it is not conclusive if the SWA can be used to provide input wind speed data for CMOD4 model or not. Since it is only initial stage of implementing the wind field retrieval algorithms and no in-situ observed data is currently avaliable, we are not able to evaluate the accuracy of the results at the moment. Therefore verification studies should be followed in the future to extract reliable wind field information in the coastal region using ERS SAR images.

  • PDF

Studies on the Application of Remote Sensing Technique to Forestry (임업(林業)에 있어서 원격탐사술(遠隔探査術)의 적용방법(適用方法)에 관(關)한 연구(硏究))

  • Kim, Kap Duk
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.1
    • /
    • pp.41-50
    • /
    • 1987
  • The various conditions of photographs, especially kinds of films, combinated filters and seasons are important factors for forestry purpose aerial photography. In this paper the variations of tones were compared between color and color infrared, panchromatic black and white and infrared black and white, and among false color photographic images created by using 3 kinds of filters when prints are made. Color infrared film was good for identifying tree species, for its spectral signatures had a greater range of tones and hues than color signatures. In that case taken in May were more effective than taken April. False color photographs were not so good as color photographs because they were mostly dark and indistinct. Infrared black and white film with medium red filter showed potential for separating broad-leaved forests from conifers. MSS composed photographs, when composed with proper bands and densities, were proved useful for distinguishing land use types but not applicable to more detailed practices such as forest type separation and tree species identification.

  • PDF

Estimation of soil moisture based on sentinel-1 SAR data: focusing on cropland and grassland area (Sentienl-1 SAR 토양수분 산정 연구: 농지와 초지지역을 중심으로)

  • Cho, Seongkeun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.973-983
    • /
    • 2020
  • Recently, SAR (Synthetic Aperture Radar) is being highlighted as a solution to the coarse spatial resolution of remote sensing data in water resources research field. Spatial resolution up to 10 m of SAR backscattering coefficient has facilitated more elaborate analyses of the spatial distribution of soil moisture, compared to existing satellite-based coarse resolution (>10 km) soil moisture data. It is essential, however, to multilaterally analyze how various hydrological and environmental factors affect the backscattering coefficient, to utilize the data. In this study, soil moisture estimated by WCM (Water Cloud Model) and linear regression is compared with in-situ soil moisture data at 5 soil moisture observatories in the Korean peninsula. WCM shows suitable estimates for observing instant changes in soil moisture. However, it needs to be adjusted in terms of errors. Soil moisture estimated from linear regression shows a stable error range, but it cannot capture instant changes. The result also shows that the effect of soil moisture on backscattering coefficients differs greatly by land cover, distribution of vegetation, and water content of vegetation, hence that there're still limitations to apply preexisting models directly. Therefore, it is crucial to analyze variable effects from different environments and establish suitable soil moisture model, to apply SAR to water resources fields in Korea.

Applicability for Detecting Trails by Using KOMPSAT Imagery (등산로 탐지를 위한 KOMPSAT 영상의 활용가능성)

  • Bae, Jinsu;Yim, Jongseo;Shin, Young Ho
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.6
    • /
    • pp.607-619
    • /
    • 2015
  • It is important to detect trails accurately for finding a proper management. We examined the applicability of KOMPSAT imagery to detect trails and found that it could be an efficient alternative to track trails correctly. We selected K2 and K3 imagery with different spatial resolution. Then, we processed each imagery to get NDVI, SAVI, and SC data. And then, we identified trails by object-based analysis and network analysis. Finally, we evaluated the potential trails with F-measurement and Jaccard coefficient which are based on correctness and completeness. The results show that the applicability is quite different in each case. Among them, especially the SC data with K3 shows the most highest value; correctness of detecting legal trails is 0.44 and completeness of that is 0.54. F-measurement and Jaccard coefficient are 0.49 and 0.32. In general, although there is a limit in detecting trails by using only KOMPSAT imagery, the usefulness of KOMPSAT imagery can be a higher considering its cost efficiency and availability of acquiring periodic data.

  • PDF

Analyzing Characteristics of Forest Damage within the Geum-buk Mountain Range (금북정맥의 산림훼손 특성 분석)

  • Jang, Gab-Sue;Jeon, Seong-Woo;Kim, Sang-Soo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.5
    • /
    • pp.55-63
    • /
    • 2008
  • The characteristics of forest damage in the Geum-buk Mountains were analyzed by using satellite images and a field survey for landscape conservation purposes. A survey scope was fixed using DEM, and areas of damage in the mountain range were analyzed via ArcMap v. 9.2 using SPOT 5 images, a high resolution satellite image. All damaged areas were reviewed and corrected in a field survey. As a result, 75 roads were found to completely fragment forest patches. Of those roads, 26 have the width under 3m, which means that the fragmentation of the forest by these roads may have a minor effect on forest habitat and its ecosystems, while other roads such as two-lane roads may have broader detrimental influences on the ecosystem. Two thousand eighty-three sections of accounted for a total area of about 5,760.7ha. Orchard areas including chestnut tree plantations were ranked as the largest in the damaged area within the Geum-buk Mountains, followed by public facility areas and grassland areas. This means that man-made land usage has progressed in the area regardless of slope and elevation.

Application of Terrestrial LiDAR for Displacement Detecting on Risk Slope (위험 경사면의 변위 검출을 위한 지상 라이다의 활용)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.323-328
    • /
    • 2019
  • In order to construct 3D geospatial information about the terrain, current measurement using a total station, remote sensing, GNSS(Global Navigation Satellite System) have been used. However, ground survey and GNSS survey have time and economic disadvantages because they have to be surveyed directly in the field. In case of using aerial photographs and satellite images, these methods have the disadvantage that it is difficult to obtain the three-dimensional shape of the terrain. The terrestrial LiDAR can acquire 3D information of X, Y, Z coordinate and shape obtained by scanning innumerable laser pulses at densely spaced intervals on the surface of the object to be observed at high density, and the processing can also be automated. In this study, terrestrial LiDAR was used to analyze slope displacement. Study area slopes were selected and data were acquired using LiDAR in 2016 and 2017. Data processing has been used to generate slope cross section and slope data, and the overlay analysis of the generated data identifies slope displacements within 0.1 m and suggests the possibility of using slope LiDAR on land to manage slopes. If periodic data acquisition and analysis is performed in the future, the method using the terrestrial lidar will contribute to effective risk slope management.