• 제목/요약/키워드: Laminated structure

검색결과 357건 처리시간 0.028초

Using Artificial Neural Network in the reverse design of a composite sandwich structure

  • Mortda M. Sahib;Gyorgy Kovacs
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.635-644
    • /
    • 2023
  • The design of honeycomb sandwich structures is often challenging because these structures can be tailored from a variety of possible cores and face sheets configurations, therefore, the design of sandwich structures is characterized as a time-consuming and complex task. A data-driven computational approach that integrates the analytical method and Artificial Neural Network (ANN) is developed by the authors to rapidly predict the design of sandwich structures for a targeted maximum structural deflection. The elaborated ANN reverse design approach is applied to obtain the thickness of the sandwich core, the thickness of the laminated face sheets, and safety factors for composite sandwich structure. The required data for building ANN model were obtained using the governing equations of sandwich components in conjunction with the Monte Carlo Method. Then, the functional relationship between the input and output features was created using the neural network Backpropagation (BP) algorithm. The input variables were the dimensions of the sandwich structure, the applied load, the core density, and the maximum deflection, which was the reverse input given by the designer. The outstanding performance of reverse ANN model revealed through a low value of mean square error (MSE) together with the coefficient of determination (R2) close to the unity. Furthermore, the output of the model was in good agreement with the analytical solution with a maximum error 4.7%. The combination of reverse concept and ANN may provide a potentially novel approach in designing of sandwich structures. The main added value of this study is the elaboration of a reverse ANN model, which provides a low computational technique as well as savestime in the design or redesign of sandwich structures compared to analytical and finite element approaches.

MFC와 능동 제어를 이용한 손상된 복합재의 동적 특성 복원 (Dynamic Characteristics Modification of Damaged Composite Structure Using MFC and Active Control Algorithm)

  • 손정우;김흥수
    • 한국소음진동공학회논문집
    • /
    • 제23권12호
    • /
    • pp.1066-1072
    • /
    • 2013
  • In this work, active control algorithm is adopted to reduce delamination effects of the damaged composite structure and control performance with MFC actuator is numerically evaluated. Finite element model for the damaged composite structure with piezoelectric actuator is established based on improved layerwise theory. In order to achieve high control performance, MFC actuator, which has increased actuating force, is considered as a piezoelectric actuator. Mode shapes and corresponding natural frequencies for the damaged smart composite structure are studied. After design and implementation of active controller, dynamic characteristics of the damaged smart composite structure are investigated.

MFC를 이용한 손상된 복합재의 능동제어 (Active Control of Damaged Composite Structure Using MFC Actuator)

  • 손정우;김흥수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.535-540
    • /
    • 2013
  • In this work, active control algorithm is adopted to reduce delamination effects of the damaged composite structure and control performance with MFC actuator is numerically evaluated. Finite element model for the damaged composite structure with piezoelectric actuator is established based on improved layerwise theory. In order to achieve high control performance, MFC actuator, which has increased actuating force, is considered as a piezoelectric actuator. Mode shapes and corresponding natural frequencies for the damaged smart composite structure are studied. After design and implementation of active controller, dynamic characteristics of the damaged smart composite structure are investigated.

  • PDF

CLT 건축물의 외벽 및 지붕 구조체 레이어 구성 유형 분석 (Analysis of the Types of External Wall and Roof Structure Layer Composition of CLT Building)

  • 유동완;이태구
    • 한국농촌건축학회논문집
    • /
    • 제22권4호
    • /
    • pp.71-78
    • /
    • 2020
  • Today, the whole world is going through a big chaos due to the COVID-19, but paradoxically, the emergence of COVID-19 has been leading to the need for sustainable development, such as Green New Deal that can improve global warming and carbon emissions, and the need for sustainable architecture is growing bigger and bigger in the architectural field as well. The level of CLT buildings in Korea is at a very rudimentary stage, while CLT buildings remedying existing wooden buildings are getting the spotlight among European countries for sustainable architecture. This study was conducted to categorize structure layer compositions of overseas CLT buildings and analyze architectural techniques and materials applied by collecting and analyzing information about CLT structure layer compositions of overseas CLT building-related institutions, companies and cases. When classifying structure layer compositions of foreign CLT buildings depending on the roles of layers. it was revealed that exterior wall structure layers were combined and organized within a sequence of external finishing, ventilation, waterproof, board, external insulation, airtightness, structure, airtightness, interior insulation, interior finishing, sloped roof structure layers were external finishing, ventilation, waterproof, board, external insulation, airtightness, structure, airtightness, interior insulation, interior finishing, flat roof structure layers were external finishing, ventilation, waterproof, planking wood, external insulation, waterproof, external insulation, airtightness, structure, airtightness, interior insulation, interior finishing.

기초격리된 구조물의 내진성능평가를 위한 실험기법 (Experimental Techniques for Evaluating Seismic Performance of Base-Isolated Structure)

  • 윤정방;정우정;김남식;김두훈
    • 한국지진공학회논문집
    • /
    • 제1권4호
    • /
    • pp.45-58
    • /
    • 1997
  • 본 연구에서는 다양한 입력지진에 대해서 기초격리된 구조물의 내진성능 평가를 위해서 진동대실험과 유사동적실험을 수행하였다. 본 논문의 목적은 다음과 같다. 하나는 진동대실험을 통하여 강한 지진의 발생시 저층의 구조물에 대한 기초격리시스템의 내진성능을 평가하는 것이고 다음으로는 진동대실험결과와 비교하여 기초격리시스템에 대한 유사동적실험기법의 적용성 및 신뢰성을 증명하는 것이다. 진동대실험은 적층고무받침을 이용하여 기초격리된 1/4 축소모형의 3층 철골구조물의 대상으로 하였다. 유사동적실험에서는 부분구조기법을 사용하여 단지 기초격리시스템만을 대상으로 실험되며 전체구조물의 지진응답은 컴퓨터 내에서 직접적분을 이용하여 계산된다. 진동대실험결과와 비교할 때 부분구조기법을 사용한 유사동적실험은 기초격리된 구조물의 동적응답 평가에 매우 효과적임을 알 수 있었다. 또한 대부분의 하중하에서 기초격리장치가 사용된 구조물의 경우에는 지진응답이 현저히 감소하는 것을 알 수 있었으나, 장주기파의 성분이 강한 지반운동에 대해서는 감소의 폭이 크지 않았다. 그러나 여러 지반조건에 대하여 UBC 시방서에서 규정한 설계하중에 대하여는 진동감소효과가 우수함을 보인다.

  • PDF

압전 재료를 이용한 셸형 복합적층판의 진동제어에 대한 실험 (Experiments on Vibration Control of Laminated Shell Structure with Piezoelectric Material)

  • 황우석;고성현;박현철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.153-156
    • /
    • 2003
  • Many researchers have tried to develop the piezoelectric shell element and verified them with the benchmarking problem of the piezoelectric bimorph beam since there is no experimental result for the control of shell structure with piezoelectric sensor/actuator. In this paper, the experiments are designed and performed to verify the control Performance of piezoelectric sensor/actuator on the shell structure. PVDF is easy to be attached on the surface of a shell structure but makes weak control forces. On the contrary, PZT makes control forces large enough to control the structure, but it is not easy to make a PZT element with curvature. To use PVDF as an actuator, the structure should be designed as flexible as possible and the voltage amplifier could make high control voltage. PVDF actuator powered by a voltage amplifier that generates output voltage from -200 to +200 volts, shows little control performance to control the vibration of an arch type shell structure. The performance of sensor looks good and the negative velocity feedback control works perfectly. The actuator voltage seems to be too small to verify the control effect Quantitatively. An experiment with high voltage amplifier is scheduled to verify the control effect Quantitatively.

  • PDF

이광자 광중합의 윤곽선 스캐닝법에 의한 마이크로 입체형상 제작 (Fabrication of Microstructures Using Double Contour Scanning (DCS) Method by Two-Photon Polymerization)

  • 박상후;임태우;이상호;양동열;공흥진;이광섭
    • 폴리머
    • /
    • 제29권2호
    • /
    • pp.146-150
    • /
    • 2005
  • 본 연구는 수십 마이크로미터 크기의 임의의 3차원 형상제작을 위한 이광자 광중합에 의한 나노 입체 리소그래피(nano-stereolithography) 공정개발에 관한 것이다. 본 연구에서 제안한 공정은 3차원 CAD 파일을 이용하여 형상의 윤곽선을 고화시켜서 연속적으로 적층하여 구조물을 제작하는 공정으로 기존의 리소그래피 공정과 달리 복잡한 형상제작이 가능하다. 형상제작은 펨토초 레이저를 이용하여 이광자 흡수 색소가 첨가된 아크릴레이트 계열의 단량체에 이광자 중합반응으로 제작하였으며 선 폭 정밀도는 150 nm수준이었다. 이광자 광중합법으로 윤곽선을 고화시켜 쉘(shell) 형태로 3차원 형상을 제작할 때에는 기계적 강성이 약하여 고화 후에 용매로 중합반응이 일어나지 않는 부분을 제거할 때 변형이 쉽게 발생하게 된다. 본 연구에서는 이러한 문제점을 해결하고자 윤곽 쉘 두께를 증가시켜 윤곽선을 중첩으로 제작하는 이중 윤곽선 스캐닝 방법(double contour scanning)을 시도하였으며 이를 통하여 제작된 형상의 강도가 향상됨을 확인할 수 있었다.

라미네이트 강도 특성에 미치는 Thermal Aging의 영향 (Effect of Thermal Aging on The Strength of Laminate Composites Structure)

  • 정연운;김국진;한중원;김윤해
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.24-28
    • /
    • 2002
  • Composite reinforced fiber materials are used in lots of fields such as a part of aeronautic space, ship, machinery and so on because can make structure wished for necessary condition by control fiber direction and laminated sequence. As the use of advanced composites increase, specific techniques have been developed to repair changed composite structures. In order to repair the damaged part production high quality composite reinforced fiber are completed by control the surrounding temperature and press in autoclave. The quality is influenced heat exposure degree by chemical reaction for precessing. This study considerated influence limit of using by repair structure part and change of properties according to heat exposure degree for repairing.

  • PDF

검은과부거미 (Latrodectus mactans) 피부 색소의 미세구조에 관한 연구 (Fine Structure of the Cutaneous Pigments in the Black Widow Spider, Latrodectus mactans)

  • 문명진
    • Applied Microscopy
    • /
    • 제28권4호
    • /
    • pp.503-512
    • /
    • 1998
  • Fine structure of the cutaneous pigments in the black widow spider, Latrodectus mactans are studied with light and electron microscopes. The cutaneous pigments are only observed in epidermal layer just beneath the cuticle. These pigments are compactly distributed around the spinnerets which located at caudal area of the abdomen. According to the fine structural characteristics of the pigment granules, two main types of guanine pigment granules-carotenoid vesicles and reflecting platelets - are observed in the cytoplasm of the epidermal cells. Morphological features of these pigment granules are characterized as the electron dense carotenoid vesicles and the electron lucent reflecting platelets. Marginal electron density of the carotenoid vesicle is different from that of internal region, whereas the reflecting platelets have laminated crystalline granules. Typiral structures of these pigment granules are very similar to those of invertebrate's chromatophores, especially erythrophores and iridophores. Moreover differentiation of these pigment granules are also originated from the small vesicles of Golgi complexes similarly to those of cutaneous chromatophores.

  • PDF

Structural Design of Mid-Story SI Tall-building with RC Frame Placed on Steel Structure

  • Isobe, Tomonobu;Aono, Hideshi
    • 국제초고층학회논문집
    • /
    • 제10권3호
    • /
    • pp.173-178
    • /
    • 2021
  • In this paper we introduce Shinagawa HEART, located in Shinagawa district, Tokyo. It is a mixed-use building with residences on the upper floors, offices on the lower floors, and commercial uses on the first and second floors, and is intended to meet the various needs of a building on the border between residential and commercial areas. The upper floors of the building are made of reinforced concrete, while the middle and lower floors are made of steel with CFT columns. First, an overview of the structural plan of the building is presented. Next, the adoption of the middle layer seismic isolation and the switch between the lower steel structure and the upper reinforced concrete structure, which are the features of this building, are explained. Finally, the construction method adopted to achieve the design performance is explained.