• 제목/요약/키워드: Laminate Thickness

검색결과 188건 처리시간 0.025초

Characterization of CFRP Laminates′Layups Using Through-Transmitting Ultrasound Waves

  • Im, Kwang-Hee;David K. Hsu;Cho, Young-Tae;Park, Jae-Woung;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제16권3호
    • /
    • pp.292-301
    • /
    • 2002
  • Ultrasound waves interact strongly with the orientation and sequence of the plies in a layup when propagating in the thickness direction of composite laminates. Also the layup orientation greatly influences its properties in a composite laminate. If the layup orientation of a ply is misaligned, it could result in the part being rejected and discarded. Now, most researchers cut a small coupon from the waste edge and use a microscope to optically verify the ply sequences on important parts. This may add a substantial cost to the production since the test is both labor intensive and performed after the part is cured. A nondestructive technique would be very beneficial, which could be used to test the part after curing and requires less time than the optical test. Therefore we have developed, reduced, and implemented a novel ply-by-ply vector decomposition model for composite laminates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. High probability is found, by comparisons between the model and tests, in characterizing cured layups of the laminates by using the proposed method.

Numerical analysis on tensile properties of composite hybrid bonded/bolted joints with flanging

  • Cheng, Xiaoquan;Zhang, Jie;Zhang, Jikui;Liu, Peng;Cheng, Yujia;Xu, Yahong
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.265-272
    • /
    • 2018
  • A detailed study was carried out on the tensile properties of the single-lap joint of a steel panel bolted/bonded to a composite laminate with a flanging. Finite element model (FEM) was established to predict the strength and to analyze the damage propagation of the hybrid joints by ABAQUS/Standard, which especially adopted cohesive elements to simulate the interface between the laminate and adhesive. The strength and failure mode predicted by FEM were in good agreement with the experimental results. In addition, three influence factors including adhesive thickness, bolt preload and bolt-hole clearance were studied. The results show that the three parameters have effect on the first drop load of the load-displacement curve, but the effect of bolt-hole clearance is the largest. The bolt-hole clearance should be avoided for hybrid joints.

초음파 트랜스듀셔 투과법을 이용한 CFRP 복합적층판의 특성평가 (Characteristics Evaluation of CFRP Composite Laminates Using a Through-Transmission Method of Ultrasonic Transducers)

  • 임광희;나승우;강태식;김선규;김지훈;이현;박제웅;심재기;양인영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.401-406
    • /
    • 2001
  • When propagating the thickness direction of composite laminates ultrasound waves interacts strongly with the orientation and sequence of the plies in a layup. Also the layup orientation greatly influences its properties in a composite laminate. If one ply of the layup orientation is misaligned, it could result in the part being rejected and discarded. Now, most researchers cut a small coupon from the waste edge and use a microscope to optically verify the ply sequences on important parts. Those may add a substantial cost to the product since the test is both labor hard and performed after the part is cured. A nondestructive technique would be very beneficial, which could be used to test the part after curing and require less time than the optical test. Therefore we have developed, reduced, and implemented a novel ply-by-ply vector decomposition model for composite lam mates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. It is found that a high probability shows between the model and tests developed in characterizing cured layups of the laminates.

  • PDF

복합재 압력용기의 성능지수 최대화를 위한 적층 설계변수 연구 (Research on Laminate Design Parameters to Maximize Performance Index of Composite Pressure Vessel)

  • 정승민;황태경
    • 한국추진공학회지
    • /
    • 제22권3호
    • /
    • pp.21-27
    • /
    • 2018
  • 본 연구에서는 복합재 압력용기의 성능지수를 최대화하기 위한 적층 설계변수의 영향도 평가 및 최적설계를 수행하였다. 성능지수를 최대화하기 위하여 압력용기의 내부체적이 고정되어 있다는 가정 하에 헬리컬 및 후프 층의 두께와 후프 층의 길이, 총 세 가지 변수를 고려하였다. 선정된 변수들의 최적화를 위하여 대체모델의 구축에 필요한 반응표면법이 도입되었고, 변수의 영향도를 평가하기 위한 분산분석이 수행되었다. 최적설계 문제는 내압성능 제약조건 하에 성능지수를 최대화하는 문제로 정식화하였다. 도출된 최적화 모델에 대한 추가적인 수치해석을 통해 본 연구의 효용성을 입증하였다.

Discrete-Layer Model for Prediction of Free Edge Stresses in Laminated Composite Plates

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.615-626
    • /
    • 2010
  • The discrete-layer model is proposed to analyze the edge-effect problem of laminates under extension and flexure. Based on three-dimensional elasticity theory, the displacement fields of each layer in a laminate have been treated discretely in terms of three displacement components across the thickness. The displacement fields at bottom and top surfaces within a layer are approximated by two-dimensional shape functions. Then two surfaces are connected by one-dimensional high order shape functions. Thus the p-convergent refinement on approximated one- and two-dimensional shape functions can be implemented independently of each other. The quality of present model is mostly determined by polynomial degrees of shape functions for given displacement fields. For nodal modes with physical meaning, the linear Lagrangian polynomials are considered. Additional modes without physical meaning, which are created by increasing nodeless degrees of shape functions, are derived from integrals of Legendre polynomials which have an orthogonality property. Also, it is assumed that mapping functions are linear in the light of shape of laminated plates. The results obtained by this proposed model are compared with those available in literatures. Especially, three-dimensional out-of-plane stresses in the interior and near the free edges are evaluated and convergence performance of the present model is established with the stress results.

Dynamic analysis for anti-symmetric cross-ply and angle-ply laminates for simply supported thick hybrid rectangular plates

  • Benhenni, Mohamed Amine;Daouadji, Tahar Hassaine;Abbes, Boussad;Adim, Belkacem;Li, Yuming;Abbes, Fazilay
    • Advances in materials Research
    • /
    • 제7권2호
    • /
    • pp.119-136
    • /
    • 2018
  • In this paper, static and vibration analysis for anti-symmetric cross-ply and angle- ply carbon/glass hybrid laminates rectangular composite plate are presented. In this analysis, the equations of motion for simply supported thick laminated hybrid rectangular plates are derived and obtained through the use of Hamilton's principle. The closed-form solutions of anti-symmetric cross-ply and angle- ply laminates are obtained using Navier solution. The effects of side-to-thickness ratio, aspect ratio, and lamination schemes on the fundamental frequencies loads are investigated. The study concludes that shear deformation laminate theories accurately predict the behavior of composite laminates, whereas the classical laminate theory over predicts natural frequencies. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. It can be concluded that the proposed theory is accurate and simple in solving the free vibration behaviors of anti-symmetric cross-ply and angle- ply hybrid laminated composite plates.

Investigating the deflection of GLARE and CARALL laminates under low-velocity impact test, experimentally and FEM simulation

  • Meisam Mohammadi;Mohammad Javad Ramezani
    • Steel and Composite Structures
    • /
    • 제47권3호
    • /
    • pp.395-403
    • /
    • 2023
  • The main objective of this article is to investigate the response of different fiber metal laminates subjected to low velocity impact experimentally and numerically via finite element method (FEM). Hence, two different fiber metal laminate (FML) samples (GLARE/CARALL) are made of 7075-T6 aluminum sheets and polymeric composites reinforced by E-glass/carbon fibers. In order to study the responses to the low velocity impacts, samples are tested by drop weight machine. The projectiles are released from 1- and 1.5-meters height were the speed reaches to 4.42 and5.42 meter per second and the impact energies are measured as 6.7 and 10 Joules. In addition to experimental study, finite element simulation is done and results are compared. Finally, a detailed study on the maximum deflection, delamination and damages in laminates and geometry's effect of projectiles on the laminate response is done. Results show that maximum deflection caused by spherical projectile for GLARE samples is more apparent in comparison with the CARALL samples. Moreover, the maximum deflection of GLARE samples subjected to spherical projectile with 6.7 Joules impact energy, 127% increases in comparison with the CARALL samples in spite of different total thickness.

Composite material optimization for heavy duty chassis by finite element analysis

  • Ufuk, Recep;Ereke, Murat
    • Advances in Automotive Engineering
    • /
    • 제1권1호
    • /
    • pp.41-59
    • /
    • 2018
  • In the study, investigation of fiber- reinforced composite materials that can be an alternative to conventional steel was performed by finite element analysis with the help of software. Steel and composite materials have been studied on a four axle truck chassis model. Three-dimensional finite element model was created with software, and then analyzes were performed. The analyses were performed for static and dynamic/fatigue cases. Fatigue cases are formed with the help of design spectra model and fatigue analyses were performed as static analyses with this design spectra. First, analyses were performed for steel and after that optimization analyses were made for the AS4-PEEK carbon fiber composite and Eglass-Epoxy fiber composite materials. Optimization of composite material analyzes include determining the total laminate thickness, thickness of each ply, orientation of each ply and ply stacking sequence. Analyzes were made according to macro mechanical properties of composite, micromechanics case has not been considered. Improvements in weight reduction up to %50 provided at the end of the composite optimization analyzes with satisfying stiffness performance of chassis. Fatigue strength of the composite structure depends on various factors such as, fiber orientation, ply thickness, ply stack sequence, fiber ductility, ductility of the matrix, loading angle. Therefore, the accuracy of theoretical calculations and analyzes should be correlated by testing.

Analysis on Stitched Mode I Specimen Using Spring Elements

  • Tapullima, Jonathan;Sim, Hyung Woo;Kweon, Jin Hwe;Choi, Jin Ho
    • Composites Research
    • /
    • 제32권2호
    • /
    • pp.102-107
    • /
    • 2019
  • Several studies related to reinforce composites structures in the through thickness direction have been developed along the years. As follows, in this study a new reinforced process is proposed based on previous experimental results using a novel stitching process in T-joints and one-stitched specimens. It was established the need to perform more analysis under standard test methods to obtain a better understanding. FEM analysis were compared after performed mode I interlaminar fracture toughness test, using different stitching patterns to analyze the through thickness strength with reference laminates without stitching. The stitching patterns were defined in $2{\times}2$ and $3{\times}3$, where the upper and lower head of the non-continuous stitching process (I-Fiber) has proven to influence in a higher through thickness strength of the laminate. In order to design the numerical model, cohesive parameters were required to define the surface to surface bonding elements using the cohesive zone method (CZM) and simulate the crack opening behavior from the double cantilever beam (DCB) test.

Unit Cell FEM Analysis Using I-Fiber Single Stitch with Different Thickness

  • Tapullima, Jonathan;Park, Gyu Yeong;Yoon, Dong Hwan;Choi, Jin Ho
    • Composites Research
    • /
    • 제34권1호
    • /
    • pp.30-34
    • /
    • 2021
  • This paper present a three-dimensional unit cell finite element analysis to predict the pull-out behavior of a single stitch in a composite laminate. The stitching process used for this study correspond to the I-fiber stitching method that has been studied by the Composite Structures Lab (CSL) as a new through-thickness reinforced method. A total of six cases were analyzed, which were divided in two groups by the stitching yarn used, 6k and 12k. Each group of cases have three different thickness according to the amount of plies; 16 plies, 32 plies and 64 plies. The finite element analysis used the cohesive zone method to characterize the single stitch reinforcement in the interface. Due to the complexity of the load vs displacement curves taken from the experimental results, a bilinear and trilinear bridging laws were implemented in the models. The cohesive parameters used for each case showed a good agreement with the experimental data and can be used for future studies.