• 제목/요약/키워드: Laminar Film Condensation

검색결과 17건 처리시간 0.02초

강제대류 층류 막응축에서 복합열전달 (Conjugate Heat Transfer of Laminar Film Condensation Along a Horizontal Plate)

  • 이억수
    • 대한기계학회논문집B
    • /
    • 제30권3호
    • /
    • pp.238-245
    • /
    • 2006
  • This paper proposes appropriate conjugate parameters and dimensionless temperatures to analysis the conjugate problem of heat conduction in solid wall coupled with laminar film condensation flow adjacent to horizontal flat plate. An efficient methods for some fluids are proposed for its solution. The momentum and energy balance equations are reduced to a nonlinear system of ordinary differential equations with four parameters: the Prandtl number, Pr, Modified Jacob number, $Ja^*/Pr$, defined by an overall temperature difference, a property ratio $\sqrt{\rho_l{\mu}_l/{\rho_v{\mu}_v}$ and the conjugate parameter $\zeta$. The obtained similarity solution reveals the effect of the conjugate parameter, and the results are compared with the simplified solution. The variations of the heat transfer rates as well as the interface temperature and frictions along the plate are shown explicitly.

기존모델과 실험자료의 통계적 분석에 의해 유도한 층류 및 난류 막응축에 대한 새로운 자연대류 열전달 관계식 (A New Natural Convection Heat Transfer Correlation for Laminar and Turbulent Film Condensation Derived from a Statistical Analysis of Existing Models and Data)

  • Chun, Moon-Hyun;Kim, Kyun-Tae
    • Nuclear Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.200-209
    • /
    • 1991
  • 수칙표면 위에서 일어나는 충류 및 난류응축 모두에 사용할 수 있는 새로운 반경험적 열전달 관계식을 제안하였다. 본 관계식의 함수 형태는 층류와 난류 막응축 유동에 대한 기존의 대표적 관계식에 근거를 두었고, 한편 본 관계식의 수치계수는 공개된 문헌에서 수집한 실험자료를 사용하여 최소자승법에 의해 결정하였다. 또한, 본 관계식과 기존 7개의 관계식 (즉 층류에 대한 관계식 4개 와 난류에 대한 관계식 3개 )의 성능을 정확도와 적용 범위에 대해서 평가하였다. 그 결과 층류 막응축에 대하여는 Zazuli의 관계식과 본 관계식이 가장 작은 평균 오차를 가져오고, 난류 영역에서는 Kirkbride와 Badger의 관계식과 본 관계식이 가장 작은 평균 오차를 가져오는 것을 보여 준다.

  • PDF

Modification of the Condensation Heat Transfer Model of RELAP5/MOD3.1 for the simulation of Secondary Condensers

  • Kim, Hyoung-Tae;No, Hee-Cheon;Park, Sang-Doug;Kim, Hyeong-Taek
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.88-94
    • /
    • 1996
  • The dependence of the node size in the condensation heat transfer coefficient for an inclined surface is eliminated and two correlations applicable for laminar and turbulent regimes are implemented in RELAP5/MOD3.1. The newly implemented correlations are used according to their applicable ranges of the film Reynolds numbers Reps which are calculated recursively to track the condensate film thickness along the condensation length. The modified version is compared with the original one through comparison with an analytical solution and the simulation of the Secondary Condensers (SC). It turns out that the simulation results by this modified version are independent of the node size and are better agreement with the analytical solution than those by the original one.

  • PDF

수직평판을 타고 흐르는 층류파동액막류에 대한 체적분율식 시간차분법에 따른 해석 결과 비교 (Comparison of Numerical Results for Laminar Wavy Liquid Film Flows down a Vertical Plate for Various Time-Differencing Schemes for the Volume Fraction Equation)

  • 박일석;김영조;민준기
    • 대한기계학회논문집B
    • /
    • 제35권11호
    • /
    • pp.1169-1176
    • /
    • 2011
  • 액막류는 레이놀즈수 및 유동 안정성에 의해 파동이 없는 층류액막류, 파동을 동반한 층류 액막류 및 난류액막류로 구분된다. 파동액막류는 강한 비선형성에 의해 매우 복잡하여 기존에는 주로 실험적 연구가 진행되었다. 수치적 해석은 주로 파동이 없는 경우에 국한되었으며 여러 가지 자유표면 해석기법을 이용하여 평균액막두께를 예측하였다. 이 연구에서는 층류액막류의 파동현상을 레이놀즈수 20~1000 범위에서 수치해석하였다. 이 때, VOF 자유표면 해석기법에 기반한 여러 가지 수치방법을 비교 연구하였으며 평균액막두께, 파동속도 및 진폭을 실험결과와 비교하였다.

수직평판에서 층류막상 응축열전달에 관한 해석적 고찰 (An analytical study on the heat transfer of the laminar filmwise condensation on a vertical surface)

  • 김형섭
    • 오토저널
    • /
    • 제2권1호
    • /
    • pp.21-31
    • /
    • 1980
  • Two phase boundary layer equations of laminar filmwise condensation are solved by an approximate integral method under the following condition; saturated vapour flows vertically downward over a cooled surface of uniform temperature, the condensate film is so thin that the inertia and convection terms are neglected. The following conclusions are drawn under the above assumptions. 1. free convection In case of the linear temperature profile in a liquid film, numerical results for the average coefficients of heat transfer may be expressed as N $u_{m}$=4/3,(G $r_{l}$ /4.H)$^{1}$4/ and in case of the quadratic profile, numerical results may be expressed as N $u_{m}$=2/1.682,(G $r_{l}$ /H)$^{1}$4/. 2. Forced convection When the temperature profile is assumed to be linear in a liquid film, numerical results fir the average heat transfer coefficients may be expressed as N $u_{m}$=(A, R $e_{l}$ /H)$^{1}$2/. This expression is compared with the experimental results hitherto reported; For theoretical Nusselt number (N $u_{m}$)$_{th}$<2*10$^{4}$, the experimental Nusselt number (N $u_{m}$)$_{exp}$ is on the average larger than theoretical Nusselt number (N $u_{m}$)$_{th}$ by 30%. For (N $u_{m}$)$_{th}$>2*10$^{4}$, experimental Nusselt number (N $u_{m}$)$_{exp}$ is about 1.6 times as large as theoretical Nusselt number (N $u_{m}$)$_{th}$. These large deviation may be caused by the presence of turbulence in the liquid film. In case of the quadratic temperature profile in a liquid film, numerical results for the average coefficients of heat transfer may be expressed as N $u_{m}$'=(2,A,Re/H)$^{1}$2/. This formular shows that theoretical Nusselt number (N $u_{m}$)$_{th}$ is larger than experimental Nusselt number (N $u_{m}$)$_{exp}$ by 60%. It is speculated that when the temperature difference between cooled surface and saturated vapour is small, temperature profile in a liquid film is quadratic.quadratic.. quadratic.quadratic..atic..

  • PDF

Assessment and Improvement of Condensation Models in RELAP5/MOD3.2

  • Choi, Ki-Yong;Park, Hyun-Sik;Kim, Sang-Jae;No, Hee-Cheon;Bang, Young-Seok
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.585-590
    • /
    • 1997
  • The condonation models in the standard RELAP5/MOD3.2 code are assessed and improved based on the database, which is constructed from the previous experimental data on various condonation phenomena The default model the laminar film condonation in RELAP5/MOD3.2 does not give any reliable predictions, and its alternative model always predicts higher values than the experimental data Therefore, it is needed to develop a new correlation based on the experimental data of various operating ranges in the constructed database. The Shah correlation, which is used to calculate the turbulent film condensation heat transfer coefficients in the standard RELAP5/MOD3.2, well predicts the experimental data in the database. The horizontally stratified condonation model of RELAP5/MOD3.2 overpredicts both cocurrent and countercurrent experimental data The correlation proposed by H.J.Kim predicts the database relatively well compared with that of RELAP5/MOD3.2 The RELAP5/MOD3.2 model should use the liquid velocity for the calculation of the liquid Reynolds number and be modified to conifer the effects of the gas velocity and the film thickness.

  • PDF

An Analytic Study on Laminar Film Condensation along the Interior Surface of a Cave-Shaped Cavity of a Flat Plate Heat Pipe

  • Lee, Jin-Sung;Kim, Tae-Gyu;Park, Tae-Sang;Kim, Choong-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.966-974
    • /
    • 2002
  • An analytic approach has been employed to study condensate film thickness distribution inside cave-shaped cavity of a flat plate heat pipe. The results indicate that the condensate film thickness largely depends on mass flow rate and local velocity of condensate. The increasing rate of condensate film for circular region reveals about 50% higher value than that of vertical region. The physical properties of working fluid affect significantly the condensate film thickness, such as the condensate film thickness for the case of FC-40 are 5 times larger than that of water. In comparison with condensation on a vertical wall, the average heat transfer coefficient in the cave-shaped cavity presented 10∼15% lower values due to the fact that the average film thickness formed inside the cave-shaped cavity was larger than that of the vertical wall with an equivalent flow length. A correlation formula which is based on the condensate film analysis for the cave-shaped cavity to predict average heat transfer coefficient is presented. Also, the critical minimum fill charge ratio of working fluid based on condensate film analysis has been predicted, and the minimum fill charge ratios for FC-40 and water are about Ψ$\_$crit/=3∼7%, Ψ$\_$crit/=0.5∼1.3% respectively, in the range of heat flux q"=5∼90kW/㎡.