• Title/Summary/Keyword: Lamella Tearing

Search Result 5, Processing Time 0.021 seconds

Sensitivity Appraisal for Lamellar Tearing of Box-Column of Ultra Thick Plate (극후판 Box-Column의 Lamellar 균열 감수성 평가)

  • 노찬승;박창수;김흥주;방한서;이창우
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.31-36
    • /
    • 2003
  • In case of this thick rolling-steel for a multistory building, a large oil-drilling structure, a large vessel, a bridge and so on, Lamella Tearing around the welded joint zone is the most serious problems. In order to prevent Lamella Tearing, not only is choice of material important, but also the comprehensive investigation for the structural design and the construction. The Lamella Tearing that is a staircase-shape occurs due to the contraction stress to the thickness direction of the plate and has the character that the cracks progress along the elongated inclusion by rolling. In general, because cracks occur at the heat affected zone and around HAZ, it is necessary to establish the safety and the confidence of the welded structure to restrain the welding defect such as Lamella Tearing. The mechanical approaches are the easier and more economical than the approaches of the material and the construction method. In addition, the appropriate welding profile and the optimum welding condition contribute toward the improvement of the productivity and influence on the standardization of the manufacturing technology.

A Study on the application for Z-Quality steel (Z-Quality 강재 적용에 대한 고찰)

  • Park, Sungjun;Ha, Yunsok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.8-13
    • /
    • 2017
  • The rolled carbon steel plate has anisotropic property in Z-direction(thickness direction). This is induced by cooling rate difference of Z-direction and sulfur which make non-metallic inclusion(MnS) at center line of thickness direction. Z-directional mechanical properties of normal steel plate are not generally specified and it is defined for Z-Quality steel only through tensile test in Z-direction. If Z-quality steel is not applied for cruciform joint, the lamella tearing will be occurred by tensile stress after welding & during operation of the structure. In this research, one equation estimating Z-directional(orthogonal to plate) stress was developed to prevent lamella tearing by welding. This equation deals with plate thickness & joint configuration(eccentricity, angle and curvature). Analyses were done by strain boundary method using sectional FE modeling and FE 3D models are also used for some cases. Designers can predict the possibility of lamella tearing by adequately applying the result and can appropriately minimize the application of Z-quality steel by revising welding design to some extent.

  • PDF

A Study of Lamella Tearing being Produced by Corner Joint Welding in Box Column of Ultra Thick Plate (극후판 Box Column의 Corner Joint 용접시 발생하는 Lamella Tearing에 관한 연구)

  • Han-Sur Bang;Seong-Joo Kim;Jong-Myung Kim;Woong-Sung Jang;Young-Seob Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.95-104
    • /
    • 1999
  • Use of the ultra thick plate is being continuously increased in large off-shore structures, ships, bridges and skyscraper construction, due to increasingly large-sized steel structures and it seems that this trend will be maintained. But, occurrence of the lamella tearing has been reported in ultra thick plate used for construction. It is reportedly caused by impurities such S(sulfur), P(phosphorus) and others accumulated in the ultra thick plate's centerline in the thickness direction with strip shape or by restraint residual stress caused by the welding. In the ultra thick plate made by continuous casting method, occurrence of lamination is difficult to avoid because of the properties of production procedure. Therefore, with a view to reducing the lamella properties, this report tries tearing in the steel structure in the view of welding strength rather than metallic properties, this report tries to seek the optimum groove and welding procedure by using the computer simulation based on FEM(Finite Element Method).

  • PDF

The Research on NAUT Characteristics Evaluation by Defection Image (결함 화상화를 통한 NAUT 특성평가 연구)

  • Na, Sun-Young;Kim, Jae-Yeol
    • Tribology and Lubricants
    • /
    • v.26 no.6
    • /
    • pp.341-345
    • /
    • 2010
  • The NAUT(Non contact Air coupled Ultrasonic Testing) is one of the ultrasonic wave inspection methods. It compensates High power ultrasound Pulser Receiver, pre-amp, air probe of high sensitivity in air to generate loss energy by NAUT methods. Generally, in case of ultrasound inspection, it applies contact methods by using couplant. However it can inspect of UT without couplant by this NAUT. The ultrasound transmission reception is composed in stable condition in NAUT. It can inspect high low material or the specimen of rough part, the narrow spot, too. The spot welding is applying the inosculation of automobile component, car body, all boards. The CFRP is necessity of NDE because of the solidity changes material according to lamella tearing. Therefore it checked on realization whether and commercialization in the spot welding and CFRP inspection that the NAUT would be applied them.

Internal Defection Evaluation of Spot Weld Part and Carbon Composite using the Non-contact Air-coupled Ultrasonic Transducer Method (비접촉 초음파 탐상기법을 이용한 스폿용접부 및 탄소복합체의 내부 결함평가)

  • Kwak, Nam-Su;Lee, Seung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6432-6439
    • /
    • 2014
  • The NAUT (Non-contact Air coupled Ultrasonic Testing) technique is one of the ultrasonic testing methods that enables non-contact ultrasonic testing by compensating for the energy loss caused by the difference in acoustic impedance of air with an ultrasonic pulser receiver, PRE-AMP and high-sensitivity transducer. As the NAUT is performed in a state of steady ultrasonic transmission and reception, testing can be performed on materials of high or low temperatures or specimens with a rough surface or narrow part, which could not have been tested using the conventional contact-type testing technique. For this study, the internal defects of spot weld, which are often applied to auto parts, and CFRP parts, were tested to determine if it is practical to make the NAUT technique commercial. As the spot welded part had a high ultrasonic transmissivity, the result was shown as red. On the other hand, the part with an internal defect had a layer of air and low transmissivity, which was shown as blue. In addition, depending on the PRF (Pulse Repetition Frequency), an important factor that determines the measurement speed, the color sharpness showed differences. With the images obtained from CFRP specimens or an imaging device, it was possible to identify the shape, size and position of the internal defect within a short period of time. In this paper, it was confirmed in the above-described experiment that both internal defect detection and image processing of the defect could be possible using the NAUT technique. Moreover, it was possible to apply NAUT to the detection of internal defects in the spot welded parts or in CFRP parts, and commercialize its practical application to various fields.