• Title/Summary/Keyword: Lamb Wave

Search Result 159, Processing Time 0.032 seconds

Lamb wave generation and analysis in a non-ferromagnetic plate using an orientation-adjustable patch-type magnetostrictive transducer (조향 자기변형 트랜스듀서(OPMT)를 이용한 비자성체 판구조물에서 램파 발생 및 신호해석)

  • Lee, Ju-Seung;Sun, Kyung-Ho;Cho, Seung-Hyun;Hong, Jin-Chul;Kim, Yoon-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.542-545
    • /
    • 2005
  • This paper is concerned wi th the generation of the Lamb waves in a non­ferromagnetic plate by a recently-developed orientation-adjustable patch-type magnetostrictive transducer (OPMT) and the dispersion analysis from the measured Lamb waves. OPMT is capable of adjusting wave-propagation orientation only with a single installation on a plate. The mechanics behind the wave generation and measurement by the magnetostrictive phenomenon, the working principle of OPMT is explained and the actual generation and measurement of the Lamb waves were conducted in a 3 mm-thick aluminum plate. For the accurate analysis of the dispersion characteristics of the measured Lamb waves, a modified version of the short-time Fourier transform, known as the dispersion-based short-time Fourier transform, was employed. The results presented in this work would serve as the underlying research for an advanced non-destructive evaluation based on ultrasonic waves.

  • PDF

Active-Sensing Lamb Wave Propagations for Damage Identification in Honeycomb Aluminum Panels

  • Flynn, Eric B.;Swartz, R.Andrew;Backman, Daniel E.;Park, Gyu-Hae;Farrar, Charles R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.269-282
    • /
    • 2009
  • This paper presents a novel approach for Lamb wave based structural health monitoring(SHM) in honeycomb aluminum panels. In this study, a suite of three signal processing algorithms are employed to improve the damage detection capability. The signal processing algorithms used include wavelet attenuation, correlation coefficients of power density spectra, and triangulation of reflected waves. Piezoelectric transducers are utilized as both sensors and actuators for Lamb wave propagation. These SHM algorithms are built into a MatLab interface that integrates and automates the hardware and software operations and displays the results for each algorithm to the analyst for side by side comparison. The effectiveness of each of these signal processing algorithms for SHM in honeycomb aluminum panels under a variety of damage conditions is then demonstrated.

Lamb Wave Inspection for Crack Detection in Coil Spring of Automobile Suspension System (자동차 현가 장치용 스프링의 신뢰성 평가를 위한 Lamb Wave 크랙검사)

  • 문병준;김노유
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.227-233
    • /
    • 2002
  • Suspension system is one of the most important components indespensible for stability and reliability of automobiles. The demands to more safe and durable suspension system have been increased as the automobiles get popular and improve in quality. The crack in the coil spring of the suspension system produced during manufacturing may grow under a fatigue load and cause a severe safety problems which lead to a catastrophic damage to the passengers. Many conventional NDT techniques including ET, RT, and UT are less sensitive or hard to apply to detect the surface breaking crack in the suspension coils partly because the techniques are point-to-point measurement methods, thus take too long time to inspect the coil spring longer than 1m. Contrary to this, Lamb wave technique is full-field measurement method that make it possible to examine the whole coil spring in real time. In this paper, the Lamb wave is applied to the coil spring to investigate the possibility to detect the cracks on the surface of the coil spring.

  • PDF

Experimental Investigation for the Attenuation Coefficient of Ultrasonic Guided Wave (유도초음파의 감쇠계수에 대한 실험적 고찰)

  • Lee, Dong-Jin;Cho, Youn-Ho;Lee, Joon-Hyun;Shin, Dong-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.458-465
    • /
    • 2009
  • In general, ultrasonic guided wave techniques that used for an evaluation of the internal defect have been applied without considering energy loss. It can be found out that the significant attenuation is observed in the signal of structure with defect by the scattering and absorption. Even in the signal acquired from defect-free structure, this attenuation can be also significant. Therefore, it is very essential to determine the Lamb wave propagation characteristics depending on modes because the dispersibility of Lamb wave can be easily influenced by the attenuation effect with frequency and thickness. For this reason, changing the propagation distance, attenuation coefficient of each Lamb wave mode needs to be investigated by the contact pitch-catch method with PZT(piezoelectric) sensors. In this paper, the experimental attenuation coefficient is measured by choosing the following three different variables; mode, thickness and plate materials. As a result, experimental attenuation coefficient is obtained as the function of variables.

Arrayed-Arc Slit Design to Improve the focusing Effect of the focused Lamb Wave by Laser (레이저에 의한 집속형 램파의 집속도 향상을 위한 원호형 슬릿 설계)

  • Jhang, Kyung-Young;Kim, Hong-Joon;Sin, Min-Jea;Kim, Jae-Yeol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.87-94
    • /
    • 2005
  • In recent, Lamb wave has been actively studied for non-destructive testing of plate. Among those studios, laser generation method of focused Lamb wave is expected to have high spatial resolution with advantages of non-contact testing. In this method, the laser beam is illuminated on the surface of object by through an arrayed-arc slit, and then the energy of the generated Lamb wave is concentrated at a focus of arc. This focusing effect improves the spatial resolution, which is dependant on the geometries of arrayed-arc slit. In this paper, the relationships between the parameters of arc-shaped slit and the focusing ability of the generated Lamb wave was investigated by the simulation based parametric study The results show that to improve the focusing effect, radius of illuminated laser, angle of arc and number of arcs must be increased, which minimum radius of arc and distance between arcs(=wavelength) must be decreased. These results are expected to be used as a guide to design the proper shape of slit.

Efficient Use of Lamb Waves and Their Wavelet Coefficients for Damage Detection of Steel Plates (강 구조물의 손상 검색을 위한 램 웨이브와 웨이브렛 계수의 효율적인 사용)

  • 박승희;윤정방;노용래
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.429-436
    • /
    • 2004
  • For the in-situ health monitoring of critical members in civil infra-structures, ultrasonic guided Lamb waves-based non-destructive evaluation (NDE) is very suitable. However, a chief drawback of the Lamb wave techniques is that multiple modes exist at all frequencies and the modes are generally dispersive, which means that the received signals may be very complicated. To overcome these complications, selective transmitting and receiving of a single A/sub 0/ mode within a frequency range can be adopted. Furthermore, a wavelet technique can be utilized to decompose the Lamb wave response into wavelet coefficients as a tool for signal processing. The changes in the Lamb waves interacting with damages in the steel plates are successfully characterized by this wavelet technique, through the amplitude change of the wavelet coefficients. In this paper, the feasibility of detecting a line crack on the surface of a steel plate and loosened bolts in a joint steel specimen using the Lamb waves and the wavelet technique is investigated.

  • PDF

A two-stage approach for quantitative damage imaging in metallic plates using Lamb waves

  • Ng, Ching-Tai
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.821-841
    • /
    • 2015
  • This paper proposes a two-stage imaging approach for quantitative inspection of damages in metallic plates using the fundamental anti-symmetric mode of ($A_0$) Lamb wave. The proposed approach employs a number of transducers to transmit and receive $A_0$ Lamb wave pulses, and hence, to sequentially scan the plate structures before and after the presence of damage. The approach is applied to image the corrosion damages, which are simplified as a reduction of plate thickness in this study. In stage-one of the proposed approach a damage location image is reconstructed by analyzing the cross-correlation of the wavelet coefficient calculated from the excitation pulse and scattered wave signals for each transducer pairs to determine the damage location. In stage-two the Lamb wave diffraction tomography is then used to reconstruct a thickness reduction image for evaluating the size and depth of the damage. Finite element simulations are carried out to provide a comprehensive verification of the proposed imaging approach. A number of numerical case studies considering a circular transducer network with eight transducers are used to identify the damages with different locations, sizes and thicknesses. The results show that the proposed methodology is able to accurately identify the damage locations with inaccuracy of the order of few millimeters of a circular inspection area of $100mm^2$ and provide a reasonable estimation of the size and depth of the damages.

Simultaneous active strain and ultrasonic measurement using fiber acoustic wave piezoelectric transducers

  • Lee, J.R.;Park, C.Y.;Kong, C.W.
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.185-197
    • /
    • 2013
  • We developed a simultaneous strain measurement and damage detection technique using a pair of surface-mounted piezoelectric transducers and a fiber connecting them. This is a novel sensor configuration of the fiber acoustic wave (FAW) piezoelectric transducer. In this study, lead-zirconate-titanate (PZT) transducers are installed conventionally on a plate's surface, which is a technique used in many structural health monitoring studies. However, our PZTs are also connected with an optical fiber. A FAW and Lamb wave are simultaneously guided in the optical fiber and the structure, respectively. The dependency of the time-of-flight of the FAW on the applied strain is quantified for strain sensing. In our experimental results, the FAW exhibited excellent linear behavior and no hysteresis with respect to the change in strain. On the other hand, the well-known damage detection function of the surface-mounted PZT transducers was still available by monitoring the waveform change in the conventional Lamb wave ultrasonic path.

The effects of the thickness variation on the propagation of Lamb waves in a composite plate (복합재 평판의 두께변화가 램파의 전파에 미치는 영향)

  • 한정호;김천곤
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.29-34
    • /
    • 2006
  • This study experimentally investigates the characteristics of Lamb wave propagating in a composite plate of varied thickness. In practical aerospace structures, there are so many parts that have varied thickness. Therefore, in order to employ the Lamb wave in a structural health monitoring of those parts, it is necessary to understand correctly the characteristics of Lamb wave for the structure with thickness variation. Thin surface-bonded piezoelectric transducers, which have great potential in integrated monitoring systems for structural health, were used to generate and receive Lamb waves. The predicted propagation velocity under the assumptions of ideal mode conversions was compared with the experimentally measured one. The validity of the results was supported by the frequency analysis of the signals. Consequently, the results show that the transient region is occurred when Lamb waves propagate across the region that thickness variation over some gradient exists.

Multi-Parameter Lamb Wave Tomography

  • Choi, Jae-Seung;Kline, Ronald A.
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • This work shows that it is possible to obtain information about more than one parameter from acoustic field information. A variety of ultrasonic Lamb wave modes were utilized to reconstruct thickness and density of an isotropic plate. An image reconstruction of one parameter (thickness of a plate) was carried out for four cases, i.e., the lowest symmetrical and anti symmetrical modes, and the fastest symmetrical and anti symmetrical Lamb waves among multiple modes. For two parameter reconstructions (thickness and density), the image processing was performed using the lowest symmetrical and antisymmetrical modes simultaneously. In this work, a modified version of algebraic reconstruction technique (ART), which is a form of finite-series expansion method, was employed to reconstruct the ultrasonically computed tomographic images. Results from several sample geometries are presented.

  • PDF