• 제목/요약/키워드: Lagrangian기법

Search Result 172, Processing Time 0.028 seconds

Electrical Impedance Tomography for Material Profile Reconstruction of Concrete Structures (콘크리트 구조의 재료 물성 재구성을 위한 전기 임피던스 단층촬영 기법)

  • Jung, Bong-Gu;Kim, Boyoung;Kang, Jun Won;Hwang, Jin-Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.249-256
    • /
    • 2019
  • This paper presents an optimization framework of electrical impedance tomography for characterizing electrical conductivity profiles of concrete structures in two dimensions. The framework utilizes a partial-differential-equation(PDE)-constrained optimization approach that can obtain the spatial distribution of electrical conductivity using measured electrical potentials from several electrodes located on the boundary of the concrete domain. The forward problem is formulated based on a complete electrode model(CEM) for the electrical potential of a medium due to current input. The CEM consists of a Laplace equation for electrical potential and boundary conditions to represent the current inputs to the electrodes on the surface. To validate the forward solution, electrical potential calculated by the finite element method is compared with that obtained using TCAD software. The PDE-constrained optimization approach seeks the optimal values of electrical conductivity on the domain of investigation while minimizing the Lagrangian function. The Lagrangian consists of least-squares objective functional and regularization terms augmented by the weak imposition of the governing equation and boundary conditions via Lagrange multipliers. Enforcing the stationarity of the Lagrangian leads to the Karush-Kuhn-Tucker condition to obtain an optimal solution for electrical conductivity within the target medium. Numerical inversion results are reported showing the reconstruction of the electrical conductivity profile of a concrete specimen in two dimensions.

DNN-Based Dynamic Cell Selection and Transmit Power Allocation Scheme for Energy Efficiency Heterogeneous Mobile Communication Networks (이기종 이동통신 네트워크에서 에너지 효율화를 위한 DNN 기반 동적 셀 선택과 송신 전력 할당 기법)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1517-1524
    • /
    • 2022
  • In this paper, we consider a heterogeneous network (HetNet) consisting of one macro base station and multiple small base stations, and assume the coordinated multi-point transmission between the base stations. In addition, we assume that the channel between the base station and the user consists of path loss and Rayleigh fading. Under these assumptions, we present the energy efficiency (EE) achievable by the user for a given base station and we formulate an optimization problem of dynamic cell selection and transmit power allocation to maximize the total EE of the HetNet. In this paper, we propose an unsupervised deep learning method to solve the optimization problem. The proposed deep learning-based scheme can provide high EE while having low complexity compared to the conventional iterative convergence methods. Through the simulation, we show that the proposed dynamic cell selection scheme provides higher EE performance than the maximum signal-to-interference-plus-noise ratio scheme and the Lagrangian dual decomposition scheme, and the proposed transmit power allocation scheme provides the similar performance to the trust region interior point method which can achieve the maximum EE.

A Study on Prediction of Sedimentation Efficiency for Sedimentation Basin using Lagrangian Method (침전지의 유동 특성과 Lagrangian Method를 이용한 침전효율 예측에 관한 연구)

  • Choi, Jong-Woong;Hong, Sung-Taek;Kim, Seong-Su;Kim, Youn-Kwon;Park, No-Suk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.229-236
    • /
    • 2017
  • Flow characteristics analysis and tracer test simulations for the rectangular typed sedimentation basins, which have been operated at D_water treatment plant in Korea, were carried out using CFD (Computational Fluid Dynamics) techniques for design ($15,864m^3/day$) and operation flowrate ($33,333m^3/day$). Also, each efficiency of the sedimentation basin was evaluated by application of the Lagrangin technique on the assumption of the particles flowing into the inlet of the sedimentation basin. From the results of simulation, the mean velocity values for making the flow in the settling basin as a plug flow region were derived as 0.00193 m/s and 0.00417 m/s, respectively. In addition, ${\beta}$ (effective contact factor) values were calculated to be 0.51 and 0.46, and the Morrill Index values were 6.05 and 3.21, respectively for both flowrate conditions.

A Study on the Behavior of Floating Debris in a Flood Control Dam Using the Lagrangian Particle Traking Method (라그랑지안 입자 추적기법을 이용한 홍수조절용댐 내 부유쓰레기 거동 모의에 관한 연구)

  • Jang, Suk-Hwan;Oh, Kyoung-Doo;Oh, Ji-Hwan
    • Journal of Environmental Science International
    • /
    • v.25 no.9
    • /
    • pp.1253-1267
    • /
    • 2016
  • After large-scale flooding damage occurred along the Imjin river in 1996, 1998, and 1999, the Hantan river flood control dam was planned, and it has since been under construction. Unlike existing dams in Korea, the Hantan river flood control dam will remain fully open except during high floods, when the dam will store flood water temporarily to reduce flood peaks and flood water volume downstream. During past flooding seasons, floating debris has caused difficulties in the management of large-scale dams. Most of the existing multipurpose dams in Korea have installed nets to collect floating debris based on many years of experience with and data about inflow and distribution of floating debris in the dams. For the Hantan river flood control dam, however, collection of data about inflow and distribution of floating debris is not possible as the dam is located near the border area between North and South Korea. In order to devise a preliminary plan to collect floating debris in the Hantan river flood control dam, an EFDC hydrodynamic model was used to analyze the behavior of floating debris during high floods. The Lagrangian particle tracking method was utilized to simulate the behavior of floating debris in the dam. Based on the analysis of paths and final destinations of the particles, seven collection points were selected where it seemed to be effective to collect floating debris, as debris is likely to accumulate there in high density.

Failure Characteristics of Oil Boom Considering the Nonlinear Interaction of Oil Boom with Waves (Oil boom과 파랑의 비선형상호작용을 고려한 Oil Boom의 누유특성)

  • Cho, Yong-Jun;Yoon, Dae-Kyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.193-204
    • /
    • 2011
  • To develop more robust oil boom which is vulnerable to various failure mode under severe weather condition, highly accurate wave model is developed using Spatially filtered Navier-Stokes Eq., LDS (Lagrangian Dynamic Smagorinsky model) for residual stresses, SPH (Smoothed Particle Hydrodynamics). To clarify the hydraulic characteristics of floating type oil boom, we numerically simulate the behavior of oil spill around oil boom under very energetic progressive waves. At the first stage, we firmly anchored the oil boom, and then, allowed the excursion of the oil boom. It turns out that oil boom with skirt of enough length (longer than 30% of depth) effectively confines the oil spill even against very energetic waves. We can also observe obliquely descending vertical eddies between y = 1~2 m as horizontal vortices shedding at the interface of oil spill and water are diffused toward the bottom, which is believed to be the birth, growing and break-down of Kelvin-Helmholz wave.

Parallel Procedure and Evaluation of Parallel Performance of Impact Simulation Based on Two-Step Eulerian Scheme (Two-Step Eulerian 기법에 기반 한 충돌 해석의 병렬처리 및 병렬효율 평가)

  • Kim Seung-Jo;Lee Min-Hyung;Paik Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1320-1327
    • /
    • 2006
  • Parallel procedure and performance of two-step Eulerian code have not been reported sufficiently yet even though it was developed and utilized widely in the impact simulation. In this study, parallel strategy of two-step Eulerian code was proposed and described in detail. The performance was evaluated in the self-made linux cluster computer. Compared with commercial code, a relatively good performance is achieved. Through the performance evaluation of each computation stage, remap is turned out to be the most time consuming part among the other part such as FE processing, communication, time marching etc.

A Comparison of Distributed Optimal Power Flow Algorithm (최적조류계산 분산처리 기법의 비교)

  • Kim, Ho-Woong;Park, Marn-Guen;Kim, Bal-Ho;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1046-1048
    • /
    • 1999
  • This Paper compares two mathematical decomposition coordination methods to implementing the distributed optimal Power flow(OPF) using the regional decomposition: the Auxiliary Problem Principle(APP) and the Alternating Direction Method(ADM), a variant of the conventional Augmented Lagrangian approach. A case study was performed with IEEE 50-bus system.

  • PDF

Photon Mapping-Based Rendering Technique for Smoke Particles (연기 파티클에 대한 포톤 매핑 기반의 렌더링 기법)

  • Song, Ki-Dong;Ihm, In-Sung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.4
    • /
    • pp.7-18
    • /
    • 2008
  • To realistically produce fluids such as smoke for the visual effects in the films or animations, we need two main processes: a physics-based modeling of smoke and a rendering of smoke simulation data, based on light transport theory. In the computer graphics community, the physics-based fluids simulation is generally adopted for smoke modeling. Recently, the interest of the particle-based Lagrangian simulation methods is increasing due to the advantages at simulation time, instead of the grid-based Eulerian simulation methods which was widely used. As a result, because the smoke rendering technique depends heavily on the modeling method, the research for rendering of the particle-based smoke data still remains challenging while the research for rendering of the grid-based smoke data is actively in progress. This paper focuses on realistic rendering technique for the smoke particles produced by Lagrangian simulation method. This paper introduces a technique which is called particle map, that is the expansion and modification of photon mapping technique for the particle data. And then, this paper suggests the novel particle map technique and shows the differences and improvements, compared to previous work. In addition, this paper presents irradiance map technique which is the pre-calculation of the multiple scattering term in the volume rendering equation to enhance efficiency at rendering time.

  • PDF

Water Quality Model for the Toxic Pollutant Transport Analysis in the Nakdong River (낙동강 유역에서의 독성오염물 배출에 따른 수질해석 모형의 개발)

  • 한건연;김광섭
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.57-70
    • /
    • 1995
  • A water quality model RIV-LAGI for the toxic pollutant transport analysis is developed based on varied flow analysis and one-dimensional Lagrangian method. Applying to the prismatic channel, it shows accurate results compared with the analytical solutions. The model is applied to the Nakdong River to analyze the phenol spill accident, which occurred on March, 1991. The computed results have good agreements with the observed data. The travel times in the reach of Gumi to Mulkeum based on the monthly average and minimum flow are computed. The suggested model can be used to study the impact of the chemical spills and clean-up plans in the Nakdong River.

  • PDF

The Optimal Control Systems of Dilution Water and Point Sources for Water Quality Management in Stream (하천 수질관리를 위한 희석수량 및 점오염원의 최적 제어시스템)

  • Shim, Soon Bo;Han, Jae Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.295-305
    • /
    • 1993
  • The purpose of this study is to investigate the theoretical methodology for development of an water quality management system with the optimal control of dilution water and point sources in streams. For the development of objective function and constraints, the control vectors are defined with stream inflows and concentrations of effluents at water treatment plant, and the state vectors are defined with water quality parameters such as DO, $BOD_5$, COD and SS concentrations. The applied system solution technique is augmented Lagrangian technique. The developed water quality optimal management methodology was applied to a case study at the Musim stream in Cheong-ju city. The results of the application show that the methodology is suitable for the comprehensive analysis of polluted water systems, and will be utilized to more useful operation of limited water resources in Korean streams.

  • PDF