• Title/Summary/Keyword: Lagrang Multiplier

Search Result 1, Processing Time 0.015 seconds

Computational enhancement to the augmented lagrange multiplier method for the constrained nonlinear optimization problems (구속조건식이 있는 비선형 최적화 문제를 위한 ALM방법의 성능향상)

  • 김민수;김한성;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.544-556
    • /
    • 1991
  • The optimization of many engineering design problems requires a nonlinear programming algorithm that is robust and efficient. A general-purpose nonlinear optimization program IDOL (Interactive Design Optimization Library) is developed based on the Augmented Lagrange Mulitiplier (ALM) method. The ideas of selecting a good initial design point, using resonable initial values for Lagrange multipliers, constraints scaling, descent vector restarting, and dynamic stopping criterion are employed for computational enhancement to the ALM method. A descent vector is determined by using the Broydon-Fletcher-Goldfarb-Shanno (BFGS) method. For line search, the Incremental-Search method is first used to find bounds on the solution, then the bounds are reduced by the Golden Section method, and finally a cubic polynomial approximation technique is applied to locate the next design point. Seven typical test problems are solved to show IDOL efficient and robust.