• Title/Summary/Keyword: Lade model

Search Result 33, Processing Time 0.017 seconds

Stress- Strain Behavior Characteristics of Single Work Hardening Model Dependant on the Stress Path (응력경도에 따른 단일항복면구성모델의 응력-변형률 거동 특성)

  • 정진섭;김찬기;박을축
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.70-81
    • /
    • 1996
  • Solutions of geotechnical engineering problems require predictions of deformation and stresses during various stages of loading. Powerful numerical methods are available to make such predictions even for complicated problems. To get accurate results, realistic stress-strain relationships of soils are dependent on a number of factors such as soil type, density, stress level and stress path. Attempts are continuously being made to develope analytical models for soils incorporating all such factors. Isotropic compression-expansion test and a series of drained conventional triaxial tests with several stress path for Baekma river sand were performed to investigate stress-strain and volume change characteristics of Lade's single work hardening model dependant on the stress path. In order to predicted of stress-strain and volumetric strain behavior were determined the values of parameters for the mode by the computer program based on the regression analysis. Predicted stress-strain behavior of triaxial compression tests and optional stress path tests for increasing confining pressure with parameters obtained conventional triaxial compression tests agreed with several test results but the prediction results for decreasing confining pressure reduced triaxial compression tests make a little difference with test results.

  • PDF

Numerical investigations on breakage behaviour of granular materials under triaxial stresses

  • Zhou, Lunlun;Chu, Xihua;Zhang, Xue;Xu, Yuanjie
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.639-655
    • /
    • 2016
  • The effect of particle breakage and intermediate principal stress ratio on the behaviour of crushable granular assemblies under true triaxial stress conditions is studied using the discrete element method. Numerical results show that the increase of intermediate principal stress ratio $b(b=({\sigma}_2-{\sigma}_3)/({\sigma}_1-{\sigma}_3))$ results in the increase of dilatancy at low confining pressures but the decrease of dilatancy at high confining pressures, which stems from the distinct increasing compaction caused by breakage with b. The influence of b on the evolution of the peak apparent friction angle is also weakened by particle breakage. For low relative breakage, the relationship between the peak apparent friction angle and b is close to the Lade-Duncan failure model, whereas it conforms to the Matsuoka-Nakai failure model for high relative breakage. In addition, the increasing tendency of relative breakage, calculated based on a fractal particle size distribution with the fractal dimension being 2.5, declines with the increasing confining pressure and axial strain, which implies the existence of an ultimate graduation. Finally, the relationship between particle breakage and plastic work is found to conform to a unique hyperbolic correlation regardless of the test conditions.

Effects of fines content on void ratio, compressibility, and static liquefaction of silty sand

  • Lade, Poul V.;Yamamuro, Jerry A.;Liggio, Carl D. Jr.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • Many aspects of the behavior of sands are affected by the content of non-plastic fine particles and these various aspects should be included in a constitutive model for the soil behavior. The fines content affects maximum and minimum void ratios, compressibility, shear strength, and static liquefaction under undrained conditions. Twenty-eight undrained triaxial compression tests were performed on mixtures of sand and fine particles with fines contents of 0, 10, 20, 30, 50, 75, and 100% to study the effects of fines on void ratio, compressibility, and the occurrence of static liquefaction. The experiments were performed at low consolidation pressures at which liquefaction may occur in near-surface, natural deposits. The presence of fines creates a particle structure in the soil that is highly compressible, enhancing the potential for liquefaction, and the fines also alter the basic stress-strain and volume change behavior, which should be modeled to predict the occurrence of static liquefaction in the field. The void ratio at which liquefaction occurs for each sand/fines mixture was determined, and the variation of compressibility with void ratio was determined for each mixture. This allowed a relation to be determined between fines content, void ratio, compressibility, and the occurrence of static liquefaction. Such relations may vary from sand to sand, but the present results are believed to indicate the trend in such relations.