• Title/Summary/Keyword: Lactococcal shuttle/expression vector

Search Result 2, Processing Time 0.014 seconds

Construction of a Lactococcal Shuttle/Expression Vector Containing a $\beta$-Galactosidase Gene as a Screening Marker (선별마커로써 $\beta$-Galactosidase 유전자를 포함한 Lactococcus용 셔틀/발현 벡터 제조)

  • Han Tae Un;Jeong Do-Won;Cho San Ho;Lee Jong-Hoon;Chung Dae Kyun;Lee Hyong Joo
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.241-247
    • /
    • 2005
  • A new lactococcal shuttle/expression vector for lactococci, pWgal13T, was constructed using a $\beta$-galactosi-dase gene (lacZ) from Lacfococcus lactis ssp. lactis ATCC 7962 as a screening marker. The pWgal 13T was introduced into Escherichia coli DH5a and L. lactis MG1363, and was easily detected by the formation of blue colonies on a medium containing X-gal without any false transformants. Also, the quantitatively lacZ activity of pWgal13T was measured in L. lactis ssp. cremoris MG1363, and was found to be four times higher than that of L. lactis ssp. lactis ATCC7962 grown on a medium containing glucose, which shows that the lacZ gene of pWgal13T can be used for the efficient screening of L. lactis on general media. The pWgal13T was equipped with a lactococcal replicon of pWV01 from L. lactis Wg2, the new promoter P13C from L. lactis ssp. cremoris LM0230, multiple cloning sites, and a terminator for the expression of a relevant gene. The vee-tor pWgal13T was used for the expression of the EGFP gene in E. coli and L. lactis. These results show that the lactococcal expression/shuttle vector constructed in the present study can be used for the production of foreign proteins in E. coli and L. lactis.

Development of Host-Vector Systems for Lactic Acid Bacteria (유산균의 Host-Vector System 개발)

  • 윤성식;김창민
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • Lactic acid bacteria (LAB) are widely used for various food fermentation. With the recent advances in modern biotechnology, a variety of bio-products with the high economic values have been produced using microorganisms. For molecular cloning and expression studies on the gene of interest, E. coli has been widely used mainly because vector systems are fully developed. Most plasmid vectors currently used for E, coli carry antibiotic-resistant markers. As it is generally believed that the antibiotic resistance markers are potentially transferred to other bacteria, application of the plasmid vectors carrying antibiotic resistance genes as selection markers should be avoided, especially for human consump-tion. By contrast, as LAB have some desirable traits such that the they are GRAS(generally recognized as safe), able to secrete gene products out of cell, and their low protease activities, they are regarded as an ideal organism for the genetic manipulation, including cloning and expression of homologous and heterologous genes. However, the vec-tor systems established for LAB are stil insufficient to over-produce gene products, stably, limiting the use of these organisms for industrial applications. For a past decade, the two popular plasmid vectors, pAM$\beta$1 of Streptococcus faecalis and pGK12 theB. subtilis-E. coli shuttle vector derived from pWV01 of Lactococcus lactis ssp. cremoris wg 2, were most widely used to construct efficient chimeric vectors to be stably maintained in many industrial strains of LAB. Currently, non-antibiotic markers such as nisin resistance($Nis^{r}$ ) are explored for selecting recombi-nant clone. In addition, a gene encoding S-layer protein, slp/A, on bacterial cell wall was successfully recombined with the proper LAB vectors LAB vectors for excretion of the heterologous gene product from LAB Many food-grade host vec-tor systems were successfully developed, which allowed stable integration of multiple plasmid copies in the vec-mosome of LAB. More recently, an integration vector system based on the site-specific integration apparatus of temperate lactococcal bacteriophage, containing the integrase gene(int) and phage attachment site(attP), was pub-lished. In conclusion, when various vector system, which are maintain stably and expressed strongly in LAB, are developed, lost of such food products as enzymes, pharmaceuticals, bioactive food ingredients for human consump-tion would be produced at a full scale in LAB.

  • PDF