• Title/Summary/Keyword: Lactate dehydrogenase (LDH)

Search Result 594, Processing Time 0.03 seconds

Lactate dehydrogenase activity and isoenzyme distribution in plasma and tissue of Korean native cattle (한우의 혈장 및 조직중의 lactate dehydrogenase의 활성치와 isoenzyme의 분포)

  • Kim, Ki-seog;Cho, Jong-hoo
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.4
    • /
    • pp.461-467
    • /
    • 1989
  • The activity of lactate dehydrogenase in plasma and various tissues(skeletal muscle, cardiac muscle, liver, lung, kidney and spleen) of Korean native cattle in a Chonju abattoir, the Breeding Stock Farm and Animal Farm of Chonbuk University was determined by using ultra violet method. Using polyacrylamide gel electrophoresis, the lactate dehydrogenase isoenzyme distrimution of plasma and various tissues in Korean native cattle was studied. The plasma lactate dehydrogenase activity of Korean native cattle was $554.80{\pm}92.70IU/l$ and the lactate dehydrogenase activity of male plasma was $543.96{\pm}97.89IU/l$, which was lower than that of female plasma, $579.19{\pm}78.09IU/l$. The plasma lactate dehydrogenase activity of calf was $557.31{\pm}110.27IU/l$ and was no significantly different from that of adult Korean native cattle. But the range of calf lactate dehydrogenase activity was larger than that of adult Korean native cattle. In tissues, the lactate dehydrogenase activity was decreased in order of lung, kidney, spleen, liver, heart and skeletal muscle. The lung had the greatest activity and the skeletal muscle had the least. Lactate dehydrogenase isoenzymes in plasma and tissues were found to have a characteristic distribution and quantitative isoenzyme patterns. In plasma, the LDH1 usually had the greatest activity and other isoenzymes showed a decreasing tendency in order of LDH2, LDH3, LDH4 and LDH5. The distribution of lactate dehydrogenase isoenzymes had a wide variation in tissues. But the distribution of LDH isoenzymes in plasma was similar to that in kidney, and also cardiac muscle and spleen had similar pattern in LDH isoenzymes distribution.

  • PDF

Distribution and Role of Mitochondrial Lactate Dehydrogenase Isozymes in Bird and Mammals (조류 및 포유류 내 미토콘드리아 젖산탈수소효소 동위효소들의 분포와 역할)

  • Cho, Sung Kyu;Yum, Jung Joo
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.530-535
    • /
    • 2017
  • Mitochondria were isolated from bird and mammals. The activity of monoamine oxidase (EC 1.4.3.4) was then measured to identify mitochondrial isolation. Lactate dehydrogenase (EC 1.1.1.27, lactate dehydrogenase, LDH) isozymes in mitochondrial fractions were analyzed by biochemical and immunochemical methods. The activity of mitochondrial LDH was lower in mammals than in bird. Therefore, the role of mitochondrial LDH seems to be more important in bird than in mammals. The concentration of protein in all tissues of bird and mammals was less in the mitochondria than in the cytosol. In the cytosol of mice and golden hamsters, testis-specific LDH $C_4$ isozyme was expressed in testis in addition to the LDH $A_4$, $A_3B$, $A_2B_2$, $AB_3$, and $B_4$ isozymes. A single LDH AB hybrid isozyme was expressed in the chicken mitochondria. In mammals, mitochondrial LDH isozymes were differed according to tissues. LDH $A_4$ and testis-specific LDH $C_4$ isozymes were expressed in the mitochondria of mice. The mitochondrial testis-specific LDH $C_4$ isozyme was expressed only in the mice. In the golden hamster mitochondria, the LDH $B_4$ isozyme functioned as a lactate oxidase. As our results show, the mitochondrial LDH seemed to be playing the different role in the bird and mammals in relation with their metabolic conditions and habitats.

Characteristics of Lactate Dehydrogenase Produced from Lactobacillus sp. FFy111-1 as a Ruminant Probiotic (반추동물용 활성제로서 Lactobacillus sp. FFy111-1이 생산한 Lactate Dehydrogenase의 특성에 관한 연구)

  • Sung, H.G.;Kim, D.K.;Bae, H.D.;Shin, H.T
    • Journal of Animal Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.625-634
    • /
    • 2004
  • The objective of this experiment is to study the possibility of lactate dehydrogenase(LDH) enzyme to prevent lactate accumulation in the rumen, For understanding capacity of bacterial LDH in rumen environments, this study was conducted to explore the effects of temperature, pH, VFAs and metal ions on Lactobacillus sp. FFy111-1's LDH activity, and the LDH activation in rumen fluid accumulated lactate. The optimum pH and temperature of LDH were pH 7.5 and 40$^{\circ}C$, respectively. The LDH activity had a good thennostability at range from 30 to 50$^{\circ}C$. The highest pH stability of the enzyme was at ranges from pH 7.0 to 8.0 and the enzyme activities showed above 64% level of non-treated one at pH 6.0 and 6.5. The LDH was inactivated by VFAs treatments but was enhanced by metal ion treatments without NaCl and $CuSO_4$ Especially, the LDH activity was increased to 127% and 124% of its original activity by 2 mM of $BaCl_2$ and $MnSO_4$, addition, respectively. When the acidic rumen fluid was treated by LDH enzyme of Lactobacillus sp. FFy111-1, the lactate concentration in the rumen fluid was lower compared with non-treated rumen fluid(P<0.05). This lactate reduction was resulted from an action of LDH. It was proved by result of purified D,L-LDH addition that showed the lowest lactate concentration among the treatments(P<0.05). Although further investigation of microbial LDH and ruminal lactate is needed, these findings suggest that the bacterial LDH has the potential capability to decrease the lactate accumulated in an acidic rumen fluid. Also, screening of super LDH producing bacteria and technical development for improving enzyme activity in rumen environment are essential keys for practical application.

Enzymatic Characterization of Bacillus cereus Lactate Dehydrogenase Isozymes Expressed in Escherichia coli (Bacillus cereus에서 유래한 Lactate Dehydrogenase 동질효소 유전자의 대장균 내 발현 및 효소특성 규명)

  • Jang, Myoung-Uoon;Park, Jung-Mi;Lee, Hong-Gyun;Lee, So-Ra;Kim, Tae-Jip
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.213-218
    • /
    • 2010
  • Lactate dehydrogenases (LDHs) have been highly focused for long time, due to their important roles in biochemical and metabolic pathways of cells. On the basis of genome-wide searching results, three putative LDH genes from Bacillus cereus ATCC 14579 genome have been PCR-amplified, cloned, and well-expressed in E. coli. All three BcLDH isozymes are supposed to share highly conserved catalytic amino acid residues in common $NAD^+$-dependent LDHs. Meanwhile, BcLDH1 consisting of 314 amino acids shares 86 and 49% of identities with BcLDH2 and 3, respectively. Interestingly, only BcLDH1 showed the converting activities between L-lactate and pyruvate in the presence of $NAD^+$ coenzyme, while the other isozymes are likely to have almost no activity. As a result, it was revealed that BcLDH1 can be a typical $NAD^+$-dependent L-lactate-specific dehydrogenase.

Iozyme Patterns of Lactate Dehydrogenase in Follicular Components (돼지체조직 및 난포구성분에 있어 Lactate Dehydrogenase Isozyme 양식)

  • 이중한;변태호;유형진;이상호
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.3
    • /
    • pp.257-262
    • /
    • 1993
  • Various tissue and follicular components were analyzed for the determination of lactate dehydrogenase(LDH) isozyme patterns by electrophoretic technique with chromogen reaction in the pig. Optimum conditions for the tissue homogenate and the storage were finally established. Small quantities of follicular components were analysed for typing of LDH isozymes by microelectrophoresis. Microelectrophoretic analysis showed that only LDH-1 was visible in the oocytes, all isozymes in cumulus masses, and LDH-1, 2 and 3 in follicular fluid. The results provide critical information on the LDH activity of various tissues and follicular components. Furthermore, t he developed methods should be useful the analysis of LDH in the small quantity of samples, especially in the oocyte, and easily applicable to the oocyte and early embryos of other domestic species.

  • PDF

Studies on the Change of Isozyme Patterns of Lactate and Malate Dehydrogenases During Embryonic Development of Some Amphibians (兩棲類 胚發生에 EK른 Lactate Dehydrogenase 및 Malate Dehydrogenase의 Isozyme 변화에 관하여)

  • Park, Young-Chul;Ha, Doo-Bong
    • The Korean Journal of Zoology
    • /
    • v.23 no.4
    • /
    • pp.263-272
    • /
    • 1980
  • Polyacrylamide gel electrophoresis was used to investigate the patterns of LDH and MDH isozymes in the embryo and adult of amphibia; Rana nigromaculata, Rana plancyi chosenica and Hynobius leechii. Rana nigromaculata is considered to be heterozygous for the gene specifying the "B" subunit of LDH, and Hynobius leechii to be heterozygous for the gene specifying the "A" subunit of LDH. The LDH isozyme paatern of embryos of the above three species is characterized by a gradual increase in the activity of LDH-5 (muscular form)during development. Two or three molecular forms of MDH is present steadily from early embryos and in adult. Of the MDH isozymes, the more cathodic one (MDH-m) appears weakly in early developing stages, but increases slowly in the activity as the embryo develops.the embryo develops.

  • PDF

Comparision of the Activity and Characteristics of Lactate Dehydrogenase Isolated from Different Parts of Soybean Seedling (발아초기의 콩 부위별 Lactate Dehydrogenase 활성변화 및 효소성질 비교)

  • Lee, Hyo-Sa;Jun, Tae-Hong
    • Applied Biological Chemistry
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 1983
  • The change of lactate dehydrogenase(LDH) activity and the possibility of the existence of LDH. isozyme were examined with different parts of soybean sprout. The enzyme activity was little changed in cotyledons throughout the early stagy of germination. However, hypocotyls and roots showed the continuous decline of the enzyme activity since the radicle emerged from seeds. It was found that LDH from hypocotyls. and roots was unstable as compared with LDH from cotyledons, even at low temperature. The enzyme from hypocotyls and roots was not purified with a good yield when the purification procedure developed for LDH from cotyledons. was employed. LDH from hypocotyls and roots has the Rm value of 0.29, and 0.25 from cotyledons. The apparent Km value for LDH from cotyledons was 0.45mM with sodium pyruvate, while crude homogenate of hypocotyls or roots showed biphasic phenomenon with two Km values 0.014 and 0.45mM. The results indicate the possibility that crude homogenate of hypocotyls or roots may contain a different LDH isozyme from the LDH of soybean reported previously.

  • PDF

Cloning and Characterization of the Lactate Dehydrogenase Genes from Lactobacillus sp. RKY2

  • Lee, Jin-Ha;Choi, Mi-Hwa;Park, Ji-Young;Kang, Hee-Kyoung;Ryu, Hwa-Won;Sunwo, Chang-Sin;Wee, Young-Jung;Park, Ki-Deok;Kim, Do-Won;Kim, Do-Man
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.318-322
    • /
    • 2004
  • Lactic acid is an environmentally benign organic acid that could be used as a raw material for biodegradable plastics if it can be inexpensively produced by fermentation. Two genes (ldhL and ldhD) encoding the L-(+) and D-(-) lactate dehydrogenases (L-LDH and D-LDH) were cloned from Lactobacillus sp., RKY2, which is a lactic acid hyper-producing bacterium isolated from Kimchi. Open reading frames of ldhL for and ldhD for the L and D-LDH genes were 962 and 998 bp, respectively. Both the L(+)- and D(-)-LDH proteins showed the highest degree of homology with the L- and D-lactate dehydrogenase genes of Lactobacillus plantarum. The conserved residues in the catalytic activity and substrate binding of both LDHs were identified in both enzymes.

Kinetic Properties of Lactate Dehydrogenase in Tissues from Rana catesbeiana (황소개구리(Rana catesbeiana) 조직의 젖산탈수소효소의 역학적 특성)

  • Yum, Jung Joo;Ha, Eun Sung
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.118-127
    • /
    • 2014
  • The kinetic properties and isozyme expression of lactate dehydrogenase (EC 1.1.1.27; LDH) in tissues from Rana catesbeiana I and II collected from February (I) and August (II) were studied. LDH activities, A4 isozyme, and LDH/citrate synthase (EC 4.1.3.7; CS) were high in skeletal muscle from R. catesbeiana I, and LDH $B_4$ isozyme increased in several tissues of R. catesbeiana II. In particular, LDH activities were high in heart and brain tissues from R. catesbeiana II. LDH eye-specific C isozyme, detected by native polyacrylamide gel electrophoresis after immunoprecipitation, was expressed in eye tissue and was more similar to the $B_4$ than $A_4$ isozyme. LDH $A_4$ isozyme was purified by oxamate-linked affinity chromatography, and the molecular weight of subunit A was 32.0 kDa. In R. catesbeiana II, levels of $Km^{PYU}$, $Vmax^{LAC}$, and tolerance to lactate of LDH were high in all tissues, and $Vmax^{PYU}$ of LDH in heart and brain tissue was highly detected. Purified $A_4$ isozyme and LDH in eye tissue were highly tolerate compared to others. The $Km^{LAC}$ value was highly measured compared to $Km^{PYU}$. The degree of inhibition by 10 mM of pyruvate on LDH activities in tissues from R. catesbeiana I and II was more pronounced as the ratio of subunit B increased. As a result, characteristic expression of LDH eye-specific C was found in R. catesbeiana. Anaerobic metabolism seemed to predominate as the LDH of skeletal muscle from I showed higher activity. It also appeared that R. catesbeiana II adapted well to incremental increases in LDH B, becoming tolerant to the lactate of LDH in tissues.

Comparison of LDH isozymes in several vertebrates (수종척추동물의 LDH isozyme에 대한 비교생화학적 연구)

  • 임중기
    • YAKHAK HOEJI
    • /
    • v.16 no.1
    • /
    • pp.34-46
    • /
    • 1972
  • Lactate dehydrogenase isozymes in heart, kidney, liver and skeletal muscle of 15 species of vertebrate animals belonging to 5 classes were separated by cellulose acetate electrophoresis and the levels of them were measured and compared with each other. Lactate dehydrogenase isozyme patterns were different from each other among animal species and among tissues. The activity of LDH$_{5}$ was superior in anaerobic tissues such as liver and skeletal muscle, and the activity of LDH$_{1}$ was superior in aerobic tissues such as heart and kidney. The level of LDH of vertebrate animals of the 5 classes has found approximatry increasing in the following order: Pisces>Amphibia>Reptelia

  • PDF