• Title/Summary/Keyword: Labyrinth Packing

Search Result 2, Processing Time 0.02 seconds

Leakage Analysis of Angled-Labyrinth-Packing-Ring Seal for Steam Turbine Using CFD (CFD를 사용한 스팀터빈용 각이 진 패킹 링 실의 누설량 예측)

  • Ha, Tae-Woong;Kang, Jung-Hyun
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.298-304
    • /
    • 2009
  • An angled labyrinth seal is used for the diaphragm-packing-ring seal design of steam turbine due to its leakage reduction characteristic. CFD analysis using FLUENT has been performed to predict leakage and determine an optimum slanted angle which yields the best leakage reduction. Results show that the optimum value of slanted angle is $-30^{\circ}$ independent of number of labyrinth teeth, inlet pressure, and tooth height to pitch ratio. 3D CFD analysis has been performed for predicting leakage of the angled labyrinth seal. Comparing with the result of 2D CFD analysis, 3D CFD analysis shows 1.4% smaller.

Control of Internal Packing Seal Clearances Considering for Shaft Behavior During Steam Turbine Operation (증기터빈 운전중 축 거동을 고려한 내부단 패킹실의 틈새 관리)

  • Pack, Min-Sik;Lee, Si-Yeon;Yang, Bo-Suk;Choi, Sung-Choul;Lee, Jae-Geun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1715-1720
    • /
    • 2004
  • This paper presents the characteristics of internal clearances for the interstage of blades and shaft gland seals on the steam turbine which are installed in tandem compound. Internal clearances was changed when the rotor turned in the cylindrical sleeve bearing due to the generation of oil film wedge. This presented concern is very useful to prevent the rubbing damage of seal edge between the fixed and moving parts in steam turbine due to the misalignment at the rotating and stationary parts. This method is applied for the unbalanced clearances distribution to the left and right sides in the turbine casing. A considerable amount of unbalanced clearances distribution trend is determined according to the rotating speed of rotor, size and type of proceeding bearing, oil viscosity, surface roughness of bearing and shaft, oil temperature, oil pressure and bearing load.

  • PDF