• Title/Summary/Keyword: Laboratory model testing

Search Result 262, Processing Time 0.026 seconds

Human Normalization Approach based on Disease Comparative Prediction Model between Covid-19 and Influenza

  • Janghwan Kim;Min-Yong Jung;Da-Yun Lee;Na-Hyeon Cho;Jo-A Jin;R. Young-Chul Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.32-42
    • /
    • 2023
  • There are serious problems worldwide, such as a pandemic due to an unprecedented infection caused by COVID-19. On previous approaches, they invented medical vaccines and preemptive testing tools for medical engineering. However, it is difficult to access poor medical systems and medical institutions due to disparities between countries and regions. In advanced nations, the damage was even greater due to high medical and examination costs because they did not go to the hospital. Therefore, from a software engineering-based perspective, we propose a learning model for determining coronavirus infection through symptom data-based software prediction models and tools. After a comparative analysis of various models (decision tree, Naive Bayes, KNN, multi-perceptron neural network), we decide to choose an appropriate decision tree model. Due to a lack of data, additional survey data and overseas symptom data are applied and built into the judgment model. To protect from thiswe also adapt human normalization approach with traditional Korean medicin approach. We expect to be possible to determine coronavirus, flu, allergy, and cold without medical examination and diagnosis tools through data collection and analysis by applying decision trees.

An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation

  • Peng, Guihan;Nakamura, Shozo;Zhu, Xinqun;Wu, Qingxiong;Wang, Hailiang
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.605-616
    • /
    • 2017
  • Concrete filled steel tubular (CFST) composite girder is a new type of structures for bridge constructions. The existing design codes cannot be used to predict the thermal stress in the CFST truss girder structures under solar radiation. This study is to develop the temperature gradient curves for predicting thermal stress of the structure based on field and laboratory monitoring data. An in-field testing had been carried out on Ganhaizi Bridge for over two months. Thermal couples were installed at the cross section of the CFST truss girder and the continuous data was collected every 30 minutes. A typical temperature gradient mode was then extracted by comparing temperature distributions at different times. To further verify the temperature gradient mode and investigate the evolution of temperature fields, an outdoor experiment was conducted on a 1:8 scale bridge model, which was installed with both thermal couples and strain gauges. The main factors including solar radiation and ambient temperature on the different positions were studied. Laboratory results were consistent with that from the in-field data and temperature gradient curves were obtained from the in-field and laboratory data. The relationship between the strain difference at top and bottom surfaces of the concrete deck and its corresponding temperature change was also obtained and a method based on curve fitting was proposed to predict the thermal strain under elevated temperature. The thermal stress model for CFST composite girder was derived. By the proposed model, the thermal stress was obtained from the temperature gradient curves. The results using the proposed model were agreed well with that by finite element modelling.

Lateral Displacement and Ground Rising Movement with Soil Embankment (성토에 따른 지반의 측방변위와 지표면 융기량)

  • Jeong, Ji-Cheol;Shin, Bang-Woong;Oh, Se-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.63-69
    • /
    • 2004
  • During and after the construction of embankment on soft ground, consolidation settlements and lateral displacements develop. But generally it's very difficult to predict the magnitude of lateral deformations and the correct distribution of lateral displacements with depth under the toe of embankment because the consolidation and the shear deformations of soft ground occur simultaneously. This study shows that later displacements of ground surface arise by embankment loading act on soft clay hight water contents in laboratory model testing. The results of model test are observed settlement of embankment, amount of maximum rising and displacement of ground surface with loading velocity. The formula were proposed to predict lateral movement by test series.

  • PDF

Wind-induced responses and dynamic characteristics of a super-tall building under a typhoon event

  • Hua, X.G.;Xu, K.;Wang, Y.W.;Wen, Q.;Chen, Z.Q.
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.81-96
    • /
    • 2020
  • Wind measurements were made on the Canton Tower at a height of 461 m above ground during the Typhoon Vincente, the wind-induced accelerations and displacements of the tower were recorded as well. Comparisons of measured wind parameters at upper level of atmospheric boundary layer with those adopted in wind tunnel testing were presented. The measured turbulence intensity can be smaller than the design value, indicating that the wind tunnel testing may underestimate the crosswind structural responses for certain lock-in velocity range of vortex shedding. Analyses of peak factors and power spectral density for acceleration response shows that the crosswind responses are a combination of gust-induced buffeting and vortex-induced vibrations in the certain range of wind directions. The identified modal frequencies and mode shapes from acceleration data are found to be in good agreement with existing experimental results and the prediction from the finite element model. The damping ratios increase with amplitude of vibration or equivalently wind velocity which may be attributed to aerodynamic damping. In addition, the natural frequencies determined from the measured displacement are very close to those determined from the acceleration data for the first two modes. Finally, the relation between displacement responses and wind speed/direction was investigated.

A self-confined compression model of point load test and corresponding numerical and experimental validation

  • Qingwen Shi;Zhenhua Ouyang;Brijes Mishra;Yun Zhao
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.465-474
    • /
    • 2023
  • The point load test (PLT) is a widely-used alternative method in the field to determine the uniaxial compressive strength due to its simple testing machine and procedure. The point load test index can estimate the uniaxial compressive strength through conversion factors based on the rock types. However, the mechanism correlating these two parameters and the influence of the mechanical properties on PLT results are still not well understood. This study proposed a theoretical model to understand the mechanism of PLT serving as an alternative to the UCS test based on laboratory observation and literature survey. This model found that the point load test is a self-confined compression test. There is a compressive ellipsoid near the loading axis, whose dilation forms a tensile ring that provides confinement on this ellipsoid. The peak load of a point load test is linearly positive correlated to the tensile strength and negatively correlated to the Poisson ratio. The model was then verified using numerical and experimental approaches. In numerical verification, the PLT discs were simulated using flat-joint BPM of PFC3D to model the force distribution, crack propagation and BPM properties' effect with calibrated micro-parameters from laboratory UCS test and point load test of Berea sandstones. It further verified the mechanism experimentally by conducting a uniaxial compressive test, Brazilian test, and point load test on four different rocks. The findings from this study can explain the mechanism and improve the understanding of point load in determining uniaxial compressive strength.

Vision-based garbage dumping action detection for real-world surveillance platform

  • Yun, Kimin;Kwon, Yongjin;Oh, Sungchan;Moon, Jinyoung;Park, Jongyoul
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.494-505
    • /
    • 2019
  • In this paper, we propose a new framework for detecting the unauthorized dumping of garbage in real-world surveillance camera. Although several action/behavior recognition methods have been investigated, these studies are hardly applicable to real-world scenarios because they are mainly focused on well-refined datasets. Because the dumping actions in the real-world take a variety of forms, building a new method to disclose the actions instead of exploiting previous approaches is a better strategy. We detected the dumping action by the change in relation between a person and the object being held by them. To find the person-held object of indefinite form, we used a background subtraction algorithm and human joint estimation. The person-held object was then tracked and the relation model between the joints and objects was built. Finally, the dumping action was detected through the voting-based decision module. In the experiments, we show the effectiveness of the proposed method by testing on real-world videos containing various dumping actions. In addition, the proposed framework is implemented in a real-time monitoring system through a fast online algorithm.

Effects of Monosaccharides and Disaccharides on the Rheological Behavior of Dense Alumina Slurries II. Oscillation Testing Method

  • Kim, Jong-Cheol;Auh, Keum-Ho;Christopher H. Schilling
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.25-29
    • /
    • 1999
  • Complex viscosities of dense alumina slurries over 45% volume density measured with the oscillating method were correlated well with Casson model. Among several monosaccharides and disaccharides studied here, fructose and sucrose showed good rheological properties in making dense alumina slurry plastic compared to other monosaccharides and disaccharides like glucose, galactose, arabinose, xylose and maltose. Sucrose content or additional water content in dense alumina slurry with sucrose contributed to the plasticity of the slurries.

  • PDF

Effects of Monosaccharides and Disaccharides on the Rheological Behavior of Dense Alumina Slurries I. Creep Testing Method

  • Kim, Jong-Cheol;Auh, Keun-Ho;Chr
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.104-109
    • /
    • 1999
  • Rheological properties of dense slurries over 45 volume % with different monosaccharides and disaccharides were checked in order to increase the solid content of dense slurries without sacrificing plasticity using creep testing method. Strain in creep test showed good correlations with Burger model which is expressed as an exponential function of time. Among several monosaccharides and disaccharides studied here, fructose and sucrose were most effective in making dense alumina slurry plastic than other monosaccharides and disaccharides like glucose, galactose, xyloss and maltose. In the case of dense alumina slurry with sucrose, sucrose content or additional water content enhanced to the plasticity of the slurries.

  • PDF

Dynamic bending behaviours of RC beams under monotonic loading with variable rates

  • Xiao, Shiyun;Li, Jianbo;Mo, Yi-Lung
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.339-350
    • /
    • 2017
  • Dynamic behaviours of reinforced concrete (RC) bending beams subjected to monotonic loading with different loading rates were studied. A dynamic experiment was carried out with the electro-hydraulic servo system manufactured by MTS (Mechanical Testing and Simulation) Systems Corporation to study the effect of loading rates on the mechanical behaviours of RC beams. The monotonic displacement control loading, with loading rates of 0.1 mm/s, 0.5 mm/s, 1 mm/s, 5 mm/s and 10 mm/s, was imposed. According to the test results, the effects of loading rates on the failure model and load-displacement curve of RC beams were investigated. The influences of loading rates on the cracking, ultimate, yield and failure strengths and displacements, ductility and dissipated energy capability of RC beams were studied. Then, the three-dimensional finite element models of RC beams, with the rate-dependent DP (Drucker-Prager) model of concrete and three rate-dependent model of steel reinforcement, were described and verified using the experimental results. Finally, the dynamic mechanical behaviours and deformation behaviours of the numerical results were compared with those of the experimental results.

Experimental study on Re number effects on aerodynamic characteristics of 2D square prisms with corner modifications

  • Wang, Xinrong;Gu, Ming
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.573-594
    • /
    • 2016
  • Simultaneous pressure measurements on 2D square prisms with various corner modifications were performed in uniform flow with low turbulence level, and the testing Reynolds numbers varied from $1.0{\times}10^5$ to $4.8{\times}10^5$. Experimental models were a square prism, three chamfered-corner square prisms (B/D=5%, 10%, and 15%, where B is the chamfered corner dimension and D is the cross-sectional dimension), and six rounded-corner square prisms (R/D =5%, 10%, 15%, 20%, 30%, and 40%, where R is the corner radius). Experimental results of drag coefficients, wind pressure distributions, power spectra of aerodynamic force coefficients, and Strouhal numbers are presented. Ten models are divided into various categories according to the variations of mean drag coefficients with Reynolds number. The mean drag coefficients of models with $B/D{\leq}15%$ and $R/D{\leq}15%$ are unaffected by the Reynolds number. On the contrary, the mean drag coefficients of models with R/D=20%, 30%, and 40% are obviously dependent on Reynolds number. Wind pressure distributions around each model are analyzed according to the categorized results.The influence mechanisms of corner modifications on the aerodynamic characteristics of the square prism are revealed from the perspective of flow around the model, which can be obtained by analyzing the local pressures acting on the model surface.