• 제목/요약/키워드: Laboratory Code

검색결과 524건 처리시간 0.026초

3-D Optical Earth System Model Construction and Disk Averaged Spectral Simulation for Habitable Earth-like Exoplanet

  • 류동옥;김석환
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.27.2-27.2
    • /
    • 2011
  • The Kepler(NASA) and CoRoT(ESA) space telescopes are surveying thousands of exoplanet for finding Earth-like exoplanets with similar environments of the Earth. Then the TPF(NASA), DARWIN(ESA) and many large-aperture ground telescopes have plan for spectroscopic observations of these earth-like exoplanets in next decades. Now, it has been started to simulate the disk averaged spectra of the earthlike exoplanets for comparing the observed spectra and suggesting solutions of environment of these planets. Previous research, the simulations are based on radiative transfer method, but these are limited by optical models of Earth system and instruments. We introduce a new simulation method, IRT(Integrated Ray Tracing) to overcome limitations of previous method. The 3 components are defined in IRT; 1)Sun model, 2)Earth system model (Atmosphere, Land and Ocean), 3)Instrument model. The ray tracing in IRT is simulated in composed 3D real scale space from inside the sun model to the detector of instrument. The Sun model has hemisphere structure with Lambertian scattering optical model. Atmosphere is composed of 16 distributed structures and each optical model includes BSDF with using 6SV radiative transfer code. Coastline and 5 kinds of vegetation distribution data are used to land model structure, and its non-Lambertian scattering optical model is defined with the semi-empirical "parametric kernel method" used for MODIS(NASA) and POLDER(CNES) missions. The ocean model includes sea ice cap structure with the monthly sea ice area variation, and sea water optical model which is considering non-lambertian sun-glint scattering. Computation of spectral imaging and radiative transfer performance of Earth system model is tested with hypothetical space instrument in IRT model. Then we calculated the disk averaged spectra of the Earth system model in IRT computation model for 8 cases; 4 viewing orientation cases with full illuminated phase, and 4 illuminated phase cases in a viewing orientation. Finally the DAS results are compared with previous researching results of radiative transfer method.

  • PDF

Experimental and numerical investigation on bearing mechanism and capacity of new concrete plug structures

  • Weng, Yonghong;Huang, Shuling;Xu, Tangjin;Zhang, Yuting
    • Computers and Concrete
    • /
    • 제24권5호
    • /
    • pp.459-468
    • /
    • 2019
  • The stability and safety of concrete plug structure of diversion tunnel is crucial for the impoundment of upstream reservoir in hydropower projects. The ongoing Wudongde hydropower plant in China plans to adopt straight column plugs and curved column plugs to replace the traditional expanded wedge-shaped plugs. The performance of the proposed new plug structures under high water head is then a critical issue and attracts the attentions of engineers. This paper firstly studied the joint bearing mechanism of plug and surrounding rock mass and found that the quality and mechanical properties of the interfaces among plug concrete, shotcrete, and surrounding rock mass play a key role in the performance of plug structures. By performing geophysical and mechanical experiments, the contact state and the mechanical parameters of the interfaces were analyzed in detail and provide numerical analysis with rational input parameters. The safety evaluation is carried out through numerical calculation of plug stability under both construction and operation period. The results indicate that the allowable water head acting on columnar plugs is 3.1 to 7.4 times of the designed water head. So the stability of the new plug structure meets the design code requirement. Based on above findings, it is concluded that for the studied project, it is feasible to adopt columnar plugs to replace the traditional expanded wedge-shaped plugs. It is hoped that this study can provide reference for other projects with similar engineering background and problems.

Design and evaluation of an innovative LWR fuel combined dual-cooled annular geometry and SiC cladding materials

  • Deng, Yangbin;Liu, Minghao;Qiu, Bowen;Yin, Yuan;Gong, Xing;Huang, Xi;Pang, Bo;Li, Yongchun
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.178-187
    • /
    • 2021
  • Dual-cooled annular fuel allows a significant increase in power density while maintaining or improving safety margins. However, the dual-cooled design brings much higher Zircaloy charge in reactor core, which could cause a great threaten of hydrogen explosion during severe accidents. Hence, an innovative fuel combined dual-cooled annular geometry and SiC cladding was proposed for the first time in this study. Capabilities of fuel design and behavior simulation were developed for this new fuel by the upgrade of FROBA-ANNULAR code. Considering characteristics of both SiC cladding and dual-cooled annular geometry, the basic fuel design was proposed and preliminary proved to be feasible. After that, a design optimization study was conducted, and the optimal values of as-fabricated plenum pressure and gas gap sizes were obtained. Finally, the performance simulation of the new fuel was carried out with the full consideration of realistic operation conditions. Results indicate that in addition to possessing advantages of both dual-cooled annular fuel and accident tolerant cladding at the same time, this innovative fuel could overcome the brittle failure issue of SiC induced by pellet-cladding interaction.

Impact-resistant design of RC slabs in nuclear power plant buildings

  • Li, Z.C.;Jia, P.C.;Jia, J.Y.;Wu, H.;Ma, L.L.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3745-3765
    • /
    • 2022
  • The concrete structures related to nuclear safety are threatened by accidental impact loadings, mainly including the low-velocity drop-weight impact (e.g., spent fuel cask and assembly, etc. with the velocity less than 20 m/s) and high-speed projectile impact (e.g., steel pipe, valve, turbine bucket, etc. with the velocity higher than 20 m/s), while the existing studies are still limited in the impact resistant design of nuclear power plant (NPP), especially the primary RC slab. This paper aims to propose the numerical simulation and theoretical approaches to assist the impact-resistant design of RC slab in NPP. Firstly, the continuous surface cap (CSC) model parameters for concrete with the compressive strength of 20-70 MPa are fully calibrated and verified, and the refined numerical simulation approach is proposed. Secondly, the two-degree freedom (TDOF) model with considering the mutual effect of flexural and shear resistance of RC slab are developed. Furthermore, based on the low-velocity drop hammer tests and high-speed soft/hard projectile impact tests on RC slabs, the adopted numerical simulation and TDOF model approaches are fully validated by the flexural and punching shear damage, deflection, and impact force time-histories of RC slabs. Finally, as for the two low-velocity impact scenarios, the design procedure of RC slab based on TDOF model is validated and recommended. Meanwhile, as for the four actual high-speed impact scenarios, the impact-resistant design specification in Chinese code NB/T 20012-2019 is evaluated, the over conservation of which is found, and the proposed numerical approach is recommended. The present work could beneficially guide the impact-resistant design and safety assessment of NPPs against the accidental impact loadings.

Scale effects on triaxial peak and residual strength of granite and preliminary PFC3D models

  • Xian, Estevez-Ventosa;Uxia, Castro-Filgueira;Manuel A., Gonzalez-Fernandez;Fernando, Garcia-Bastante;Diego, Mas-Ivars;Leandro R., Alejano
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.461-476
    • /
    • 2022
  • Research studies on the scale effect on triaxial strength of intact rocks are scarce, being more common those in uniaxial strength. In this paper, the authors present and briefly interpret the peak and residual strength trends on a series of triaxial tests on different size specimens (30 mm to 84 mm diameter) of an intact granitic rock at confinements ranging from 0 to 15 MPa. Peak strength tends to grow from smaller to standard-size samples (54 mm) and then diminishes for larger values at low confinement. However, a slight change in strength is observed at higher confinements. Residual strength is observed to be much less size-dependent. Additionally, this study introduces preliminary modelling approaches of these laboratory observations with the help of three-dimensional particle flow code (PFC3D) simulations based on bonded particle models (BPM). Based on previous studies, two modelling approaches have been followed. In the first one, the maximum and minimum particle diameter (Dmax and Dmin) are kept constant irrespective of the sample size, whereas in the second one, the resolution (number of particles within the sample or ϕv) was kept constant. Neither of these approaches properly represent the observations in actual laboratory tests, even if both of them show some interesting capabilities reported in this document. Eventually, some suggestions are provided to proceed towards improving modelling approaches to represent observed scale effects.

Evaluation of horizontal-axis-three-blade wind turbines' behavior under different tornado wind fields

  • Mohamed AbuGazia;Ashraf El Damatty;Kaoshan Dai;Wensheng Lu;Nima Ezami
    • Wind and Structures
    • /
    • 제37권6호
    • /
    • pp.413-423
    • /
    • 2023
  • Wind turbines are usually steel hollow structures that can be vulnerable to dramatic failures due to high-intensity wind (HIW) events, which are classified as a category of localized windstorms that includes tornadoes and downbursts. Analyzing Wind Turbines (WT) under tornadoes is a challenging-to-achieve task because tornadoes are much more complicated wind fields compared with the synoptic boundary layer wind fields, considering that the tornado's 3-D velocity components vary largely in space. As a result, the supporting tower of the wind turbine and the blades will experience different velocities depending on the location of the event. Wind farms also extend over a large area so that the probability of a localized windstorm event impacting one or more towers is relatively high. Therefore, the built-in-house numerical code "HIW-WT" has been developed to predict the straining actions on the blades considering the variability of the tornado's location and the blades' pitch angle. The developed HIWWT numerical model incorporates different wind fields that were generated from developed CFD models. The developed numerical model was applied on an actual wind turbine under three different tornadoes that have different tornadic structure. It is found that F2 tornado wind fields present significant hazard for the wind turbine blades and have to be taken into account if the hazardous impact of this type of unexpected load is to be avoided.

동전기적방법에 의한 스트론튬 오염토양 제염 (Electrorestoration of Strontium ion Contaminated Soils)

  • 김계남;원휘준;박근일;박희성;오원진
    • 한국토양환경학회지
    • /
    • 제5권1호
    • /
    • pp.25-32
    • /
    • 2000
  • 동전기적 제염 장치를 제작하여 $Sr^{2+}$ 으로 오염된 Kaolin Clay토양을 제염하여 제염후의 셀토양 내의 잔류 농도를 XRF로 측정하여 동전기적 방법에 의한 제염효율을 분석했다. 또한, 이 동전기적 토양제염을 모델링하기 위해 새로운 수치모델을 개발하였고 이 모델에 의한 예측값과 제염실험값을 서로 비교하여 개발한 수치모델을 검증했다. 한편 셀 가장자리에 위치한 전극의 전위차를 높이며 전위차에 따른 토양제염 특성을 분석했다. 동전기적 제염 장치에 의한 오염토양의 제염결과 3일 경과 후 40V하에서 실험셀 앞부분 토양 내의 $Sr^{2+}$은 거의 제염되었고 중간부분은 제염비율의 변화가 거리에 따라 매우 심하게 나타났다. 그러나 뒷부분은 거의 제염되지 않았다. 그래서 셀토양 내의 $Sr^{2+}$의 총제염 비율은 약 42.6% 였다. 제염실험 6일 경과후 셀토양 내의 총제염 비율은 약 84.8% 였다. 또한, 개발된 수치 모델에 의한 예측치는 제염실험값과 상당한 일치를 보였다. 한편 셀 가장자리에 위치한 전극의 전위차를 10V, 20V, 40V로 높이며 토양제염 특성을 분석한 곁과 총제거율은 전위차가 높아짐에 따라 약 21.9%, 43.3%, 84.8%로 높아지는 것으로 나타났다.

  • PDF

무결함 재료의 크기에 따른 강도와 탄성계수의 변화에 관한 연구 (A study on the Change of Uniaxial Compressive Strength and Young's Modulus According to the Specimen Size of Intact Material)

  • 이승우;송재준
    • 한국터널지하공간학회 논문집
    • /
    • 제8권3호
    • /
    • pp.205-217
    • /
    • 2006
  • 암석과 불연속면은 암반을 구성하는 주요소이며 각각의 주요 물성들은 암반 구조물의 역학적 안정성에 직접적인 영향을 미친다. 암석 및 암반 불연속면의 물성은 시료의 크기에 따라 변화하는 양상을 보이므로 실험실 시험에서 얻은 물성을 현장 구조물 설계에 적용할 때는 세심한 주의가 필요하다. 이러한 이유로 실험실에서 얻은 암석 및 불연속면의 물성을 이용하여 현장규모의 암석 및 불연속면의 물성을 합리적으로 예측하는 방법을 확립할 필요가 있다. 본 연구에서는 암반의 크기 효과에 대한 기초 연구로서 불연속면을 제외한 무결암 부분의 크기에 따른 물성 변화를 알아보고자 한다. 무결암에 가까운 재료를 택하기 위해 암석 대신 최대한 균질성이 보장될 수 있는 인공재료를 선택하였고 이러한 인공 재료에 대한 크기 변화에 따른 강도 및 탄성계수의 변화양상에 대해 살펴보았다. Buckingham's theorem을 이용한 차원해석을 통해 이상적인 무결함 재료의 크기에 따른 강도 및 탄성계수의 변화 양상을 파악하였고 이를 실험을 통해 검증해보기 위해 총 6가지의 재료를 대상으로 일축압축강도 실험을 실시하였다. 또한 3차원 입자결합모델을 이용한 상용프로그램인 PFC3D (Particle Flow Code 3- Dimension)를 사용하여 무결함 시료에 대해서 크기에 따른 강도 및 탄성계수 등의 물성 변화 양상을 수치해석을 통해 확인하고 그 영향요소를 분석하였다.

Numerical investigation on effects of rotor control strategy and wind data on optimal wind turbine blade shape

  • Yi, Jin-Hak;Yoon, Gil-Lim;Li, Ye
    • Wind and Structures
    • /
    • 제18권2호
    • /
    • pp.195-213
    • /
    • 2014
  • Recently, the horizontal axis rotor performance optimizer (HARP_Opt) tool was developed in the National Renewable Energy Laboratory, USA. This innovative tool is becoming more popular in the wind turbine industry and in the field of academic research. HARP_Optwas developed on the basis of two fundamental modules, namely, WT_Perf, a performance evaluator computer code using the blade element momentum theory; and a genetic algorithm module, which is used as an optimizer. A pattern search algorithm was more recently incorporated to enhance the optimization capability, especially the calculation time and consistency of the solutions. The blade optimization is an aspect that is highly dependent on experience and requires significant consideration on rotor control strategies, wind data, and generator type. In this study, the effects of rotor control strategies including fixed speed and fixed pitch, variable speed and fixed pitch, fixed speed and variable pitch, and variable speed and variable pitch algorithms on optimal blade shapes and rotor performance are investigated using optimized blade designs. The effects of environmental wind data and the objective functions used for optimization are also quantitatively evaluated using the HARP_Opt tool. Performance indices such as annual energy production, thrust, torque, and roof-flap moment forces are compared.

Bacterial Expression of Cytochrome $b_5$ Type III Pseudogene

  • Baek, Sun-Ah;Kim, Su-Won;Kim, Jong-Won;Yoo, Min
    • 대한의생명과학회지
    • /
    • 제18권3호
    • /
    • pp.310-312
    • /
    • 2012
  • Cytochrome $b_5$ is involved in the reduction of methemoglobin back to hemoglobin, thereby maintaining normal function of the blood to carry oxygen around. Congenital abnormal condition of this enzyme causes a rare disease called methemoglobinemia. At least 4 different retropseudogenes are reported so far for cytochrome $b_5$. However, type III pseudogene has attracted most attention because it contains open reading frame in its structure. Although there is no evidence yet if this pseudogene is actually expressed in the cell or the blood the possibility of its expression needs to be elucidated. We have isolated type III pseudogene by polymerase chain reaction and cloned into pGEX-4T-1 expression vector followed by SDS-PAGE. Protein was expressed and the size of the expressed protein was 28 kDa as expected in its genetic code. This result also shows that the protein is not harmful for the viability of the microorganism. This study may contribute to the genetic diagnosis of cardiac diseases, possibly caused by cytochrome $b_5$.