• Title/Summary/Keyword: Laboratory Code

검색결과 523건 처리시간 0.028초

Kinetics calculation of fast periodic pulsed reactors using MCNP6

  • Zhon, Z.;Gohar, Y.;Talamo, A.;Cao, Y.;Bolshinsky, I.;Pepelyshev, Yu N.;Vinogradov, Alexander
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1051-1059
    • /
    • 2018
  • Fast periodic pulsed reactor is a type of reactor in which the fission bursts are formed entirely with external reactivity modulation with a specified time periodicity. This type of reactors could generate much larger intensity of neutron beams for experimental use, compared with the steady state reactors. In the design of fast periodic pulsed reactors, the time dependent simulation of the power pulse is majorly based on a point kinetic model, which is known to have limitations. A more accurate calculation method is desired for the design analyses of fast periodic pulsed reactors. Monte Carlo computer code MCNP6 is used for this task due to its three dimensional transport capability with a continuous energy library. Some new routines were added to simulate the rotation of the movable reflector parts in the time dependent calculation. Fast periodic pulsed reactor IBR-2M was utilized to validate the new routines. This reactor is periodically in prompt supercritical state, which lasts for ${\sim}400{\mu}s$, during the equilibrium state. This generates long neutron fission chains, which requires tremendously large amount of computation time during Monte Carlo simulations. Russian Roulette was applied for these very long neutron chains in MCNP6 calculation, combined with other approaches to improve the efficiency of the simulations. In the power pulse of the IBR-2M at equilibrium state, there is some discrepancy between the experimental measurements and the calculated results using the point kinetics model. MCNP6 results matches better the experimental measurements, which shows the merit of using MCNP6 calculation relative to the point kinetics model.

A Study on the Evaluation for the Application of a Comn CFD Code to Flow Analysis of a HAWTs (수평축 풍력발전용 터빈의 유동 해석을 위한 상용 CFD 코드의 적용성 평가에 관한 연구)

  • Kim, B. S.;Kim, J. H.;Nam, C. D.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.396-401
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is evaluate the application of a commercial CFD code to predict 3-D flow characteristics of wind turbine. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing disproportionally with the size of the wind turbines, and is hence mostly limited to observing the phenomena. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Wavier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations presented in this paper. The 3-D flow separation and the wake distribution of 2 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and visualized result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good agree with visualized results.

  • PDF

Constant Amplitude Multiple Access Channel Coding for Impulse Radio UWB Networks (임펄스 UWB 네트워크에서의 일정진폭 다중접속 채널코팅)

  • Kim, Tong-Sok;Kim, Yong-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • 제45권6호
    • /
    • pp.42-47
    • /
    • 2008
  • In this article a novel constant amplitude precoding for impulse UWB system is proposed. According to IEEE 802.15.4a, impulse UWB can be used in indoor localization and sensor data transmission. Most USN(ubiquitous sensor networks) needs multiple access. However impulse UWB system has a limited capability to detect superpositioned signal induced by multiple access. To overcome this problem we have adopted the concept of CAMC(Constant Amplitude Multi-Code) deviced by Wada and Kim. The proposed system consists of systematic constant amplitude precoding and LDPC decoding. And this system shows a good BER performance in computer simulation.

Numerical and Experimental Flow Visualization on Nasal Airflow (비강 내 공기유동에 대한 실험 및 전산 유동가시화)

  • Kim, Sung-Kyun;Park, Joon-Hyung;Huynh, Quang Liem
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제33권6호
    • /
    • pp.461-467
    • /
    • 2009
  • Knowledge of airflow characteristics in nasal cavities is essential to understand the physiological and pathological aspects of nasal breathing. Several studies have utilized physical models of the healthy nasal cavity to investigate the relationship between nasal anatomy and airflow. In our laboratory, there have been a series of experimental investigations on the nasal airflow in normal, abnormal, and deformed nasal cavity models by PIV under both constant and periodic flow conditions. In this time normal and several deformed nasal cavity models, which simulate surgical operation, Turbinectomy, are investigated numerically by the FVM general purpose code and PIV analysis. The comparisons of these results are appreciated. Dense CT data and careful treatment of model surface under the ENT doctor's advice provide more sophisticated cavity models. The Davis (LaVision Co.) code is used for PIV flow analysis. Average and RMS distributions have been obtained for inspirational and expirational nasal airflows in the normal and deformed nasal cavities.

Characteristics of in situ stress regime measured by hydraulic fracturing technique and its application on tunnel design (현지암반 초기지압의 분포특성 및 암반터널설계에의 적용)

  • Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • 제7권4호
    • /
    • pp.323-333
    • /
    • 1997
  • A rock mass is usually classified by the results of geological survey and laboratory tests on rock specimens in order to obtain the adequate properties for the numerical analysis. For these purposes a rock mass strength is estimated based on the empirical criterion proposed by Hoek and Brown and a modulus of deformation is taken with the empirical relations developed by Bieniawski, Serafim and Pereira. In addition, the $K_o$ value which is the ratio of the horizontal stress to the vertical stress is one of the most important input data in the numerical analysis. Its role on a tunnel stability analysis could be verified with the numerical results taken by a finite difference code or a distinct element code. However, a deduced value used to be applied for the $K_o$ value in most of tunnel designs, even though the patterns of stress tensor are variable with regions and depths. Thus in situ stresses were measured by a hydraulic fracturing technique on several tunnel sites and applied directly to the tunnel design for the enhancement of its precision. With those informations on in situ stresses, the safe design should be obtained economically on the road or subway tunnels.

  • PDF

A Cross-Layer Unequal Error Protection Scheme for Prioritized H.264 Video using RCPC Codes and Hierarchical QAM

  • Chung, Wei-Ho;Kumar, Sunil;Paluri, Seethal;Nagaraj, Santosh;Annamalai, Annamalai Jr.;Matyjas, John D.
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.53-68
    • /
    • 2013
  • We investigate the rate-compatible punctured convolutional (RCPC) codes concatenated with hierarchical QAM for designing a cross-layer unequal error protection scheme for H.264 coded sequences. We first divide the H.264 encoded video slices into three priority classes based on their relative importance. We investigate the system constraints and propose an optimization formulation to compute the optimal parameters of the proposed system for the given source significance information. An upper bound to the significance-weighted bit error rate in the proposed system is derived as a function of system parameters, including the code rate and geometry of the constellation. An example is given with design rules for H.264 video communications and 3.5-4 dB PSNR improvement over existing RCPC based techniques for AWGN wireless channels is shown through simulations.

Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.99-110
    • /
    • 2017
  • In this paper, the effect of normal load on the failure mechanism of echelon joint has been studied using PFC2D. In the first step, calibration of PFC was undertaken with respect to the data obtained from experimental laboratory tests. Then, six different models consisting various echelon joint were prepared and tested under two low and high normal loads. Furthermore, validation of the simulated models were cross checked with the results of direct shear tests performed on non-persistent jointed physical models. The simulations demonstrated that failure patterns were mostly influenced by normal loading, while the shear strength was linked to failure mechanism. When ligament angle is less than $90^{\circ}$, the stable crack growth length is increased by increasing the normal loading. In this condition, fish eyes failure pattern occur in rock bridge. With higher ligament angles, the rock bridge was broken under high normal loading. Applying higher normal loading increases the number of fracture sets while dilation angle and mean orientations of fracture sets with respect to ligament direction will be decreased.

Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)

  • Haeri, Hadi;Sarfarazi, Vahab
    • Computers and Concrete
    • /
    • 제18권1호
    • /
    • pp.39-51
    • /
    • 2016
  • This paper considers the tensile strength of concrete samples in direct, CTT, modified tension, splitting and ring tests using both of the experimental tests and numerical simulation (particle flow code 2D). It determined that which one of indirect tensile strength is close to direct tensile strength. Initially calibration of PFC was undertaken with respect to the data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, validation of the simulated models in four introduced tests was also cross checked with the results from experimental tests. By using numerical testing, the failure process was visually observed and failure patterns were watched to be reasonable in accordance with experimental results. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Tensile strength of concrete in direct test was less than other tests results. Tensile strength resulted from modified tension test was close to direct test results. So modified tension test can be a proper test for determination of tensile strength of concrete in absence of direct test. Other advantages shown by modified tension tests are: (1) sample preparation is easy and (2) the use of a simple conventional compression press controlled by displacement compared with complicate device in other tests.

Numerical Simulation for Characteristics of Rock Strength and Deformation Using Grain-Based Distinct Element Model (입자 기반 개별요소모델을 통한 암석의 강도 및 변형 특성 모사)

  • Park, Jung-Wook;Lee, Yun-Su;Park, Chan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • 제24권3호
    • /
    • pp.243-254
    • /
    • 2014
  • The present study introduces a numerical technique to simulate the mechanical behavior of brittle rock, based on a grain-based model combined with Universal Distinct Element Code (GBM-UDEC). Using the technique, the microstructure of rock sample was represented as an assembly of deformable polygonal grains, and the failure process with the evolution of micro tensile cracks under compression was examined. In terms of the characteristics of strength and deformation, the behaviors of the simulated model showed good agreement with the observations in the laboratory-scale experiments of rock.

A Study on Evaluation for the Applicatioin of a CFD Code to Flow Analysis and an Estimate of Performance for HAWT (수평축 풍력발전용 터빈의 유동해석 및 성능예측에 대한 CFD의 적용성 평가에 관한 연구)

  • Kim, Beom-Seok;Kim, Jeong-Hwan;Kim, You-Taek;Nam, Chung-Do;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2192-2197
    • /
    • 2003
  • The purpose of this 3-D numerical simulation is evaluate the application of a commercial CFD code to predict 3-D flow and power characteristics of wind turbines. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing with the size of the wind turbines, hence mostly limited to observing the phenomena on rotor blades. Therefore, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations in this paper. The 3-D flow separation and the wake distribution of 2 and 3 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and smoke-visualized experimental result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good consistent with smoke-visualized result. The calculated power of the 3 bladed rotor by CFD is compared with BEM results by TV-Delft. The CFD results of which is somewhat consist with BEM results, under an error less than 10%.

  • PDF