• Title/Summary/Keyword: LabVIEW software package

Search Result 4, Processing Time 0.023 seconds

The Algorithm of Life Time Diagnostics end Evaluating of Exchanges Time about High Pressure Sodium Vapor Lamp Using the LabVIEW Software Package (LabVIEW 소프트웨어 패키지를 이용한 고압나트륨전등의 교환시점 및 수명진단 알고리듬)

  • Han, Tae-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.1-7
    • /
    • 2004
  • It is necessary for starting voltage to him on high pressure discharge lamp. This starting voltage supply to high pressure sodium vapor lamp as electric discharge lamp, Electric field is producted in Electric discharge tube, So accelerative electron collide against vapour atom and second electron is generated, And rapidly the current flow to Electric discharge tube. This paper showed that the life cycle and exchanges time for all electric discharge lamp was different according to each manufactures, This paper is proposed the evaluating algorithm of exchanges time for high pressure sodium vapor lamp, used LabVIEW software package.

Estimation unknown parameter of 2nd order circuits using LabVIEW (LabVIEW를 이용한 2차 회로의 미지 파라미터 추정)

  • 윤정주;이민철;이승희;고석조;이영진;안철기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1131-1134
    • /
    • 2003
  • Unknown parameters of a nonlinear system were estimated using a signal compression method. The estimated parameters were natural frequency and tile damping coefficient. This study applied a algorithm using tile comparison of the cross-correlation coefficient between the impulse response from a model and it from the signal compression method. The impulse through linear element included in a nonlinear system could be obtained by the signal compression method. The unknown parameters of the linear element could be estimated by comparing the Bode plots of system's impulse response with them of model's response. In this study, a LSCM(LabVIEW-Signal-Compression-Method) was developed to identify a nonlinear system. The LSCM consisted of National Instrument's (NI) Data Acquisition (DAQ) Board (Model PCI-1200), a monitoring program using LabVIEW software package, DAQ Signal Accessory Board, and 2nd-order electric circuits. The designed electric circuits consisted of resistors, inductors and capacitors. To evaluate the performance of the LSCM, the response from model with known parameters is compared with the response from the real system using the monitoring program. The results from simulation of experiment showed that the developed LSCM provided a reliable estimation performance.

  • PDF

Dynamic Behavioral Prediction of Escherichia coli Using a Visual Programming Environment (비쥬얼 프로그래밍 환경을 이용한 Escherichia coli의 동적 거동 예측)

  • Lee, Sung-Gun;Hwang, Kyu-Suk;Kim, Cheol-Min
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.39-49
    • /
    • 2004
  • When there is a lack of detailed kinetic information, dFBA(dynamic flux balance analysis) has correctly predicted cellular behavior under given environmental conditions with FBA and different ial equations. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. For this reason, the dFBA has limited the represen tation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. Moreover, to calculate optimal metabolic flux distribution which maximizes the growth flux and predict the b ehavior of cell system, linear programming package(LINDO) and spreadsheet package(EXCEL) have been used simultaneously. thses two software package have limited in the visual representation of simulation results and it can be difficult for a user to look at the effects of changing inputs to the models. Here, we descirbes the construction of hierarchical regulatory network with defined symbolsand the development of an integrated system that can predict the total control mechanism of regulatory elements (opero ns, genes, effectors, etc.), substrate concentration, growth rate, and optimal flux distribution with time. All programming procedures were accoplished in a visual programming environment (LabVIEW).

  • PDF

Testing The Healing Environment Conditions for Nurses with two Independent Variables: Visibility Enhancement along with Shortening the Walking Distance of the Nurses to Patient - Focused on LogWare stop sequence and space syntax for U-Shape, L- Shape and I-Shape NS-

  • Shaikh, Javaria Manzoor;Park, Jae Seung
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.19-26
    • /
    • 2015
  • Purpose: Maximizing human comfort in design of medical environments depends immensely on specialized architects particularly critical care design; the study proposes Evidence-Based Design as an apparent analog to Evidence-Based Medicine. Healthcare facility designs are substantially based on the findings of study in an effort to design environments that augment care by improving patient safety and being therapeutic. On SPSS (Statistical Package for Social Science) t-test is applied to simulate two independent variables of PDR (Pre Design-Research) and POE (Post- Occupancy Evaluation). PDR is conducted on relatively new hospital Hallym University Dongtan Sacred Heart Hospital to analyse visibility from researchers' point of view, here the ICU is arranged in I-Shape. POE is applied on Dongguk University Ilsan Hospital to simulate walking on LogWare where two NS are designed based on L- Shape and Seoul St. Mary's Hospital, The Catholic University of Korea where five NS are functional for ICU Intensive Care Unit, Surgical Intensive Care Unit (SICU), Medical Intensive Care Unit (MICU), Critical Care Unit (CCU), Korean Oriental Medical Care Unit which are mostly arranged in U-Shape, and walking pattern is recognized to be in a zigzag path. Method: T-Test is applied on two dependent communication variables: walkability and visibility, with confidence interval of 95%. This study systematically analyses the Nurse Station (NS) typo-morphology, and simulates nurse horizontal circulation, by computing round route visits to patient's bed, then estimating minimum round route on LogWare stop sequence software. The visual connectivity is measured on depth map graphs. Hence the aim is to reduce staff stress and fatigue for better patients care by minimizing staff horizontal travel time and to facilitate nurse walk path and support space distribution by increasing effectiveness in delivering care. Result: Applying visibility graph and isovist field on space syntax on I- Shape, L- Shape and U- Shape ICU (SICU, MICU and CCU) configuration, I-shape facilitated 20% more patients in linear view as they stir to rise from their beds from nurse station compared to U-shape. In conclusion, it was proved that U-Shape supply minimum walking and maximum visibility; and L shape provides just visibility as the nurse is at pivot. I shape provides panoramic view from the Nurse Station but very rigorous walking.