• Title/Summary/Keyword: Lab-scale test

Search Result 254, Processing Time 0.038 seconds

Optimal Design for Tubular SOFC Testing Jig (관형 고체산화물연료전지 테스트 지그 최적화)

  • Choi, Hoon;An, Gwon-Seong;Shin, Chang-Woo;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.303-306
    • /
    • 2009
  • High temperature solid oxide fuel cells (SOFCs) offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. Solid oxide fuel cells in several different designs have been investigated; these include planar and tubular geometries. The tubular type cell is widely researched due to it have advantages about thermal expansion and sealing issues. Unfortunately, lab scale tubular cell for testing has thermal expansion and sealing problems. The previous Jig for lab scale tubular cell testing has many sealing problems. When we feed fuel gas to jig inlet, ceramic glue sealant has amount of gas expansion pressure, because temperature of feeding gas changes ambient temperature to high temperature ($700{\sim}900^{\circ}C$). Furthermore, when we carry out long time test, something like degradation test, crack of ceramic glue sealant due to weakness of mechanical properties can make stop working the test. Additionally, we reduce setting process for assembling, because micanite is not required drying or debinding process.

  • PDF

Issues in structural health monitoring for fixed-type offshore structures under harsh tidal environments

  • Jung, Byung-Jin;Park, Jong-Woong;Sim, Sung-Han;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.335-353
    • /
    • 2015
  • Previous long-term measurements of the Uldolmok tidal current power plant showed that the structure's natural frequencies fluctuate with a constant cycle-i.e., twice a day with changes in tidal height and tidal current velocity. This study aims to improve structural health monitoring (SHM) techniques for offshore structures under a harsh tidal environment like the Uldolmok Strait. In this study, lab-scale experiments on a simplified offshore structure as a lab-scale test structure were conducted in a circulating water channel to thoroughly investigate the causes of fluctuation of the natural frequencies and to validate the displacement estimation method using multimetric data fusion. To this end, the numerical study was additionally carried out on the simplified offshore structure with damage scenarios, and the corresponding change in the natural frequency was analyzed to support the experimental results. In conclusion, (1) the damage that occurred at the foundation resulted in a more significant change in natural frequencies compared with the effect of added mass; moreover, the structural system became nonlinear when the damage was severe; (2) the proposed damage index was able to indicate an approximate level of damage and the nonlinearity of the lab-scale test structure; (3) displacement estimation using data fusion was valid compared with the reference displacement using the vision-based method.

Experimental study on the compressive stress dependency of full scale low hardness lead rubber bearing

  • Lee, Hong-Pyo;Cho, Myung-Sug;Kim, Sunyong;Park, Jin-Young;Jang, Kwang-Seok
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.89-103
    • /
    • 2014
  • According to experimental studies made so far, design formula of shear characteristics suggested by ISO 22762 and JEAG 4614, representative design code for Lead Rubber Bearing(LRB) shows dependence caused by changes in compressive stress. Especially, in the case of atypical special structure, such as a nuclear power structure, placement of seismic isolation bearing is more limited compared to that of existing structures and design compressive stress is various in sizes. As a result, there is a difference between design factor and real behavior with regards to shear characteristics of base isolation device, depending on compressive stress. In this study, a full-scale low hardness device of LRB, representative base isolation device was manufactured, analyzed, and then evaluated through an experiment on shear characteristics related to various compressive stresses. With design compressive stress of the full-scale LRB (13MPa) being a basis, changes in shear characteristics were analyzed for compressive stress of 5 MPa, 10 MPa, 13 MPa, 15 MPa, and 20 MPa based on characteristics test specified by ISO 22762:2010 and based on the test result, a regression analysis was made to offer an empirical formula. With application of proposed design formula which reflected the existing design formula and empirical formula, trend of horizontal characteristics was analyzed.

A Study on the Elimination of Microcystis sp. using Microbubble (미세기포를 이용한 Microcystis sp. 제거에 관한 연구)

  • Hyung, Sung-Hee;Lee, Kap-Du;Park, Sang-Won
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.425-438
    • /
    • 2016
  • This study carried out zeta potential measurements of the Microcystis sp. under various solutions condition and investigated the characteristics of Microcystis sp. through the size control of microbubbles to eliminate algae that causes problems in aquatic ecosystems and human activities. DAF process was adopted and several coagulants were used to remove the Microcystis sp. CCD Camera was used to measure and analyze the size of microbubble, and fluorescent microscope was used to observe the particle, algae species and community. Zeta potential behavior of the algae was analyzed by using ELS-Z. Lab-scale and pilot-scale experiments were conducted to test flotation process. Polyaluminium chloride(PAC) coagulant was used, and the removal efficiency of the algae was assessed through Chlorophyll-a analysis. In the Lab-scale experiment, 2.2 ppm, 11 ppm, 22 ppm, and 44 ppm of polyaluminium chloride was injected to coagulate the algae. The coagulated algae was floated by the microbubble. The microbubbles in the experiments were generated at a air pressure of 450 ~ 550 kPa. The microbubble size was controlled in $36{\mu}m$, $100{\mu}m$, and $200{\mu}m$, respectively by using different diffuser. The results of lab-scale experiments on flotation plant indicated that the average removal rate was about 90% or above for 11 ppm, 22 ppm, and 44 ppm of polyaluminium chloride. On the other hand, in the pilot-scale experiment, the removal efficiency was in the range of 85% to 95% in all dose ranges of polyalumium chloride and aluminium sulfate coagulants.

Study on the Treatment Performance of SCB-M with Swine Manure (SCB-M의 돈분 처리 성능에 관한 연구)

  • Park, Jong Tae;Kim, Sang Hun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.365-372
    • /
    • 2012
  • Purpose: Performance of slurry composting and biofiltration with methane production (SCB-M) using swine manure and sawdust was evaluated. The suitable specific liquid input (SLI) was determined at lab-scale SCB. Method: In lab-scale SCB, the SLI test was performed at liquid input rate of 0.04, 0.09, $0.17cc/cm^3$ with constant sawdust volume. In pilot-scale SCB-M, the swine manure was fed to methane digester at organic loading rate (OLR) of 0.25-0.5 g VS/L/d. The effluent from methane digester was filtered using SCB. Results: The SLI at $0.04cc/cm^3$ showed good performance in terms of retention time. In pilot-scale SCB, the removal of $NH_3$-N and total nitrogen (T-N) was found to be around 59% and 28%, respectively. Similarly, volatile fatty acid (VFA) and total chemical oxygen demand (TCOD) removal was found be 56% and 43%, respectively. Conclusions: For SCB-M process, the SLI of $0.04cc/cm^3$ is recommended. The performance of swine manure treatment was improved more by using SCB-M system than using methane digester only.

Development and Lab-scale Plant Study of Coagulation Sedimentation Module using Cyclone (선회류를 이용한 응집침전모듈의 개발 및 실증 연구)

  • Moon, Jinyoung;Cho, Young-Gun;Song, Seung-Jun;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3336-3344
    • /
    • 2014
  • The purpose of this study is small scale coagulation module is developed and demonstrated through a lab-scale test. Recent as a sewage treatment rate increases, have heightened the interest in the necessity on the nonpoint source and developing a small processing unit has been increased. Coagulation sedimentation module in this study is additional growth of floc through swirling in the outside zone, reduction of microstructure floc number and the internal settling zone through vertical/level flow complex sedimentation method after the coagulation process precipitation method as an effective high separation efficiency can be divided was also assessed. Coagulation sedimentation module can increase the load factor was 4.4 times compared to conventional clarifier base on the same volume and surface area through vertical/level flow. In this study, this process was selected formation and maintenance of swirling and uniform flow distribution in the internal settling zone as an important design factor, to derive its FLUENT was used to characteristics of the flow model. Through the simulation of swirling, influent velocity, dimensions of external basin, hopper depth of bottom cone was determined and through analysis of velocity distribution, flow distribution detailed specifications are derived like as diameter and number of effluent hole. Lab-scale($120{\ell}/hr$) test results, influent of 300~800 NTU to less than 10 NTU without polymer feeding was able to operate in the 20minutes retention time(surface loading rate $37.3m^3/m^2$-day), and through analysis FLUENT the possibility of using design parameters were derived.

Effective Control of fine Particles Using an Electrostatic Coagulation Between Particle and Water Droplet (입자와 액적간의 정전기적 응집을 통한 미세입자의 효율적인 제어)

  • Lee, Myong-Hwa;Kim, Sang-Bum;Hwang, You-Seong;Kim, Jong-Ho;Kim, Gyung-Soo
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.98-104
    • /
    • 2006
  • A charged droplet scrubber was introduced to remove visible smokes generated in many industrial facilities. Lab-scale and field tests were conducted in this study. The system consists of a corona discharger to effectively charge the fine particles, fellowed by an electrostatic chamber to promote coagulation between charged fine particles and oppositely charged droplets and a demister to remove resultant particles. Overall collection efficiency, 98.4% was obtained from a lab-scale test, when a high voltage was applied to an ionizer and a charged droplet scrubber. Field tests also show the high collection efficiencies, 93.5% with one stage and 99.4% with two stage system. This system can be used to increase the collection efficiency of the conventional air pollution control devices to satisfy the national emission standard.

  • PDF

An Investigation on the Effect of Stabilization Methods for Rice Paddies contaminated by Heavy Metal considering Characteristics of submerged Paddy (담수답의 특성을 고려한 중금속 오염 농경지의 토양개량공법 효과 검토)

  • Yu, Chan;Yun, Sung-Wook;Lee, Jung-Hoon;Choi, Seung-Jin;Lee, Seong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1455-1471
    • /
    • 2009
  • In order to investigate on the effect of stabilization methods for rice paddies contaminated by heavy metals, a series of lab-scale model test was carried out by applying the characteristics of submerged Paddy soil. To perform the lab-scale model test, columns were made by acrylic with the dimension of diameter=10cm, thickness=0.5cm and were filled with soils which was contaminated were mixed with stabilization agents(lime stone 5% and steel refining slag 5% respectively). To manipulate the reduction condition, soils in the columns were submerged with distilled water. And then soil water and subsurface water in each column were sampled in the regular term and analysed the various physical and chemical properties.

  • PDF

Development and Fabrication of Heating and Water Sparging Remediation System (HWSRS) for DNAPL-contaminated Groundwater Treatment

  • Lee, Ju-Won;Park, Won-Seok;Gong, Hyo-Young;Lee, Ae-Ri;Kim, Da-Eun;Baek, Seung-Chon;Lee, Jong-Yeol
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.32-37
    • /
    • 2013
  • The scope of this study was to develop, design, and build an ex-situ remediation system of using the heating and water sparging treatment for the highly volatile DNAPL (Dense Non-Aqueous Phase Liquid) contaminated groundwater, and to conduct pilot testing at the site contaminated with DNAPL. The TCE (Trichloroethylene) removal was at the highest rate of 94.6% with the water sparging at $70^{\circ}C$ in the lab-scale test. The pilot-scale remediation system was developed, designed, and fabricated based on the results of the lab-scale test conducted. During the pilot-scale testing, DNAPL-contaminated groundwater was detained at heat exchanger for the certain period of time for pre-heating through the heat exchanger using the thermal energy supplied from the heater. The heating system supplies thermal energy to the preheated DNAPL-contaminated groundwater directly and its highly volatile TCE, $CCl_4$ (Carbontetrachloride), Chloroform are vaporized, and its vaporized and treated water is return edback to the heat exchanger. In the pilot testing the optimum condition of the HWSRS was when the water temperature at the $40^{\circ}C$ and operated with water sparging concurrently, and its TCE removal rate was 90%. The efficiency of the optimized HWSRS has been confirmed through the long-term performance evaluation process.