• Title/Summary/Keyword: LWR

Search Result 188, Processing Time 0.032 seconds

Effect of $U_3O_8$-seed on the grain growth of uranium dioxide ($U_3O_8$ 종자가 $UO_2$ 핵연료 소결체의 입자성장에 미치는 영향)

  • Rhee, Young-Woo;Kim, Dong-Joo;Kim, Keon-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.2
    • /
    • pp.75-81
    • /
    • 2007
  • Densification and grain growth have been investigated in 5 wt% $U_3O_8$ seeded $UO_2$ and compared with those of the common $UO_2$ pellet. $UO_2$ compacts and $U_3O_8$ seeded $UO_2$ compacts were sintered at $1300{\sim}1700^{\circ}C$ for 0 h to 4 h. Density and grain size of the sintered pellets were measured by the water immersion method and the image analyzer, respectively. The seeded pellet has a slightly lower density during the intermediate sintering stage. However, the difference of density between two pellets decreases to about 0.5%TD with increasing the sintering temperature. The grain size of the two pellets is similar until $1600^{\circ}C$ but that of the seeded pellet rapidly increases with increasing the sintering temperature.

OECD/NEA BENCHMARK FOR UNCERTAINTY ANALYSIS IN MODELING (UAM) FOR LWRS - SUMMARY AND DISCUSSION OF NEUTRONICS CASES (PHASE I)

  • Bratton, Ryan N.;Avramova, M.;Ivanov, K.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.313-342
    • /
    • 2014
  • A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for Uncertainty Analysis in Modeling (UAM) is defined in order to facilitate the development and validation of available uncertainty analysis and sensitivity analysis methods for best-estimate Light water Reactor (LWR) design and safety calculations. The benchmark has been named the OECD/NEA UAM-LWR benchmark, and has been divided into three phases each of which focuses on a different portion of the uncertainty propagation in LWR multi-physics and multi-scale analysis. Several different reactor cases are modeled at various phases of a reactor calculation. This paper discusses Phase I, known as the "Neutronics Phase", which is devoted mostly to the propagation of nuclear data (cross-section) uncertainty throughout steady-state stand-alone neutronics core calculations. Three reactor systems (for which design, operation and measured data are available) are rigorously studied in this benchmark: Peach Bottom Unit 2 BWR, Three Mile Island Unit 1 PWR, and VVER-1000 Kozloduy-6/Kalinin-3. Additional measured data is analyzed such as the KRITZ LEU criticality experiments and the SNEAK-7A and 7B experiments of the Karlsruhe Fast Critical Facility. Analyzed results include the top five neutron-nuclide reactions, which contribute the most to the prediction uncertainty in keff, as well as the uncertainty in key parameters of neutronics analysis such as microscopic and macroscopic cross-sections, six-group decay constants, assembly discontinuity factors, and axial and radial core power distributions. Conclusions are drawn regarding where further studies should be done to reduce uncertainties in key nuclide reaction uncertainties (i.e.: $^{238}U$ radiative capture and inelastic scattering (n, n') as well as the average number of neutrons released per fission event of $^{239}Pu$).

Study on the Lateral Dynamic Crush Strength of a Spacer Grid Assembly for a LWR Nuclear Fuel Assembly (경수로 핵연료집합체 지지격자체의 횡방향 충격강도 연구)

  • Song, Kee-Nam;Lee, Sang-Hoon;Lee, Soo-Bum;Lee, Jae-Jun;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1175-1183
    • /
    • 2010
  • A spacer grid assembly is one of the most important structural components in a Light Water Reactor(LWR) nuclear fuel assembly. In the case of the Zircaloy spacer grid assembly, the primary design consideration is to ensure that lateral dynamic crush strength of the spacer grid assembly is sufficient to resist design basis loads and thereby prevent seismic accidents, without a significant increase in the hydraulic head loss for the reactor coolant in the reactor core. In this study, factors affecting the lateral dynamic crush strength of a spacer grid assembly were analyzed by performing lateral dynamic crush tests and finite element analyses. Further, an effective and economical method to enhance the lateral dynamic crush strength of the spacer grid assembly is proposed.

Experimental Study on Pressure Loss of Flow Parallel to Rod Bundle with Spacer Grid (지지격자가 있는 봉다발과 축방향으로 평행한 유동의 압력손실에 관한 실험적 연구)

  • Lee, Chi-Young;Shin, Chang-Hwan;Park, Ju-Yong;In, Wang-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.689-695
    • /
    • 2012
  • The friction factor in a rod bundle and the loss coefficient at a spacer grid were examined. As a test section, 25 smooth rods, 9.5 mm in diameter and 2000 mm in length, were prepared and installed in a $5{\times}5$ square array in a square channel. In this case, the P/D (Pitch-to-Diameter ratio) was 1.35. In this work, plain (i.e., no mixing vanes), split-vane, and hybrid-vane spacer grids were tested. In a bare rod bundle (i.e., no spacer grid), the measured friction factors were in good agreement with the previous correlations. Among the spacer grids tested, the hybrid-vane spacer grid presented the largest friction factor in the rod bundle and loss coefficient. This may be because of the flow pattern change induced by large relative plugging of the flow cross section and mixing vane geometry. At Re=$5{\times}10^5$, the predicted loss coefficients of plain, splitvane, and hybrid-vane spacer grids were approximately 0.79, 0.80, and 0.88, respectively.