• 제목/요약/키워드: LVQ2

검색결과 34건 처리시간 0.023초

혼합형 신경회로망을 이용한 근전도 패턴 분류에 의한 가상 로봇팔 제어 방식 (The Virtual Robot Arm Control Method by EMG Pattern Recognition using the Hybrid Neural Network System)

  • 정경권;김주웅;엄기환
    • 한국정보통신학회논문지
    • /
    • 제10권10호
    • /
    • pp.1779-1785
    • /
    • 2006
  • 본 논문은 근전도 패턴 인식에 의한 가상 로봇팔 제어 방식을 제안한다. 고차원의 근전도 신호를 정밀하게 분류하기 위하여 혼합형 신경 회로망 방식을 사용한다. 혼합형 신경회로망은 SOFM과 LVQ로 구성되고, 고차원의 EMG 신호를 2차원 데이터로 변환한다. 3개의 표면 전극을 이용하여 EMG 신호를 측정 한다. 제안한 혼합 시스템을 이용하여 한글 자음 6개의 수화 신호를 분류한다. 가상 로봇팔 실험을 통해서 제안한 혼합 시스템을 이용한 수신호의 EMG 패턴 인식의 유용성을 확인하였다.

GLVQ클러스터링을 위한 필기체 숫자의 효율적인 특징 추출 방법 (The Efficient Feature Extraction of Handwritten Numerals in GLVQ Clustering Network)

  • 전종원;민준영
    • 한국정보처리학회논문지
    • /
    • 제2권6호
    • /
    • pp.995-1001
    • /
    • 1995
  • 패턴인식은 전처리, 특징추출, 식별의 과정을 거쳐 인식을 하게된다. 식별과정 에서 여러개의 패턴이 흩어져 있을 경우에 유사한 패턴끼리 클러스터링을 위하여 한 카테고리 내에서 패턴을 분할하게 된다. 클러스터링 방법에는 통계적인 방법으로 k-means 방법, ISODATA알고리즘등이 있으며〔1〕, 최근에는 신경망에 의한 클러스터링 방법으로 T, Kohonen의 LVQ(Learning Vector Quantization)가 주로 이용되었다〔6〕. Nikhil R, Pal. et al은 LVQ알고리즘을 보다 개선한 방법으로 GLVQ(Generalized LVQ, 1993)를 제안하였다〔4〕.본 논문은 GLVQ 알고니즘으로 패턴을 클러스터링 할 경우에 효율적인 특징추출 방법을 제안한다. 본 논문에서는 20명의 필기체 숫자 0에서 9까지 의 200개 패턴을 여러 가지 방법으로 특징 추출하여 GLVQ알고리즘으로 10개(0-9의 패턴) 의 클러스터로 구분하고, 해당 클러스터에서 오분류되는 패턴의 비율로서 그 효율성을 비교 하였다. 그 결과 투영조합 방법을 이용하였을 경우 98.5%의 분류율을 나타내었다.

  • PDF

Robust 2-D Object Recognition Using Bispectrum and LVQ Neural Classifier

  • HanSoowhan;woon, Woo-Young
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.255-262
    • /
    • 1998
  • This paper presents a translation, rotation and scale invariant methodology for the recognition of closed planar shape images using the bispectrum of a contour sequence and the learning vector quantization(LVQ) neural classifier. The contour sequences obtained from the closed planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The higher order spectra based on third order cumulants is applied to tihs contour sample to extract fifteen bispectral feature vectors for each planar image. There feature vector, which are invariant to shape translation, rotation and scale transformation, can be used to represent two0dimensional planar images and are fed into a neural network classifier. The LVQ architecture is chosen as a neural classifier because the network is easy and fast to train, the structure is relatively simple. The experimental recognition processes with eight different hapes of aircraft images are presented to illustrate the high performance of this proposed method even the target images are significantly corrupted by noise.

  • PDF

복호길이 6인 Sliding-Window를 적용한 순방향 실시간 복호기 구현 (Realization of Forward Real-time Decoder using Sliding-Window with decoding length of 6)

  • 박지웅
    • 한국통신학회논문지
    • /
    • 제30권4C호
    • /
    • pp.185-190
    • /
    • 2005
  • IS-95와 IMT-2000 시스템에서 사용되고 있는 여러 종류의 길쌈 부호기를 부호율 1/2, 구속장 3인 길쌈 부호기로 한정하여, 비터비 복호기에 복호길이 6인 Sliding-Window와 Neural Network의 LVQ(Learning Vector Quantization)및 PVSL(Prototype Vectors Selecting Logic)을 적용하여 순방향 실시간 복호기를 구현한다. 이론적으로 제한된 AWGN 채널환경에서의 심볼 전송전력 $S/(N_{0}/2)=1$을 성능비교 조건으로 하여 순방향 실시간 복호기와 기존의 비터비 복호기의 $강\cdot연판정$ BER 성능과 하드웨어 구성을 $비교\cdot분석$하여, 본 논문에서 제시된 순방향 실시간 복호기의 BER 성능의 우수성과 비화통신의 장점 및 하드웨어 구성의 단순합을 검증하였다.

Hybrid Neural Classifier Combined with H-ART2 and F-LVQ for Face Recognition

  • Kim, Do-Hyeon;Cha, Eui-Young;Kim, Kwang-Baek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1287-1292
    • /
    • 2005
  • This paper presents an effective pattern classification model by designing an artificial neural network based pattern classifiers for face recognition. First, a RGB image inputted from a frame grabber is converted into a HSV image which is similar to the human beings' vision system. Then, the coarse facial region is extracted using the hue(H) and saturation(S) components except intensity(V) component which is sensitive to the environmental illumination. Next, the fine facial region extraction process is performed by matching with the edge and gray based templates. To make a light-invariant and qualified facial image, histogram equalization and intensity compensation processing using illumination plane are performed. The finally extracted and enhanced facial images are used for training the pattern classification models. The proposed H-ART2 model which has the hierarchical ART2 layers and F-LVQ model which is optimized by fuzzy membership make it possible to classify facial patterns by optimizing relations of clusters and searching clustered reference patterns effectively. Experimental results show that the proposed face recognition system is as good as the SVM model which is famous for face recognition field in recognition rate and even better in classification speed. Moreover high recognition rate could be acquired by combining the proposed neural classification models.

  • PDF

최근점 이웃망에의한 참조벡터 학습 (Learning Reference Vectors by the Nearest Neighbor Network)

  • Kim Baek Sep
    • 전자공학회논문지B
    • /
    • 제31B권7호
    • /
    • pp.170-178
    • /
    • 1994
  • The nearest neighbor classification rule is widely used because it is not only simple but the error rate is asymptotically less than twice Bayes theoretical minimum error. But the method basically use the whole training patterns as the reference vectors. so that both storage and classification time increase as the number of training patterns increases. LVQ(Learning Vector Quantization) resolved this problem by training the reference vectors instead of just storing the whole training patterns. But it is a heuristic algorithm which has no theoretic background there is no terminating condition and it requires a lot of iterations to get to meaningful result. This paper is to propose a new training method of the reference vectors. which minimize the given error function. The nearest neighbor network,the network version of the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule and the reference vectors are represented by the weights between the nodes. The network is trained to minimize the error function with respect to the weights by the steepest descent method. The learning algorithm is derived and it is shown that the proposed method can adjust more reference vectors than LVQ in each iteration. Experiment showed that the proposed method requires less iterations and the error rate is smaller than that of LVQ2.

  • PDF

포즈 추정 기반 얼굴 인식 시스템 설계 : 포즈 추정 알고리즘 비교 연구 (Design of Face Recognition System Based on Pose Estimation : Comparative Studies of Pose Estimation Algorithms)

  • 김진율;김종범;오성권
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.672-681
    • /
    • 2017
  • This paper is concerned with the design methodology of face recognition system based on pose estimation. In 2-dimensional face recognition, the variations of facial pose cause the deterioration of recognition performance because object recognition is carried out by using brightness of each pixel on image. To alleviate such problem, the proposed face recognition system deals with Learning Vector Quantizatioin(LVQ) or K-Nearest Neighbor(K-NN) to estimate facial pose on image and then the images obtained from LVQ or K-NN are used as the inputs of networks such as Convolution Neural Networks(CNNs) and Radial Basis Function Neural Networks(RBFNNs). The effectiveness and efficiency of the post estimation using LVQ and K-NN as well as face recognition rate using CNNs and RBFNNs are discussed through experiments carried out by using ICPR and CMU PIE databases.

Fuzzy Mean Method with Bispectral Features for Robust 2D Shape Classification

  • Woo, Young-Woon;Han, Soo-Whan
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.313-320
    • /
    • 1999
  • In this paper, a translation, rotation and scale invariant system for the classification of closed 2D images using the bispectrum of a contour sequence and the weighted fuzzy mean method is derived and compared with the classification process using one of the competitive neural algorithm, called a LVQ(Learning Vector Quantization). The bispectrun based on third order cumulants is applied to the contour sequences of the images to extract fifteen feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images and are fed into an classifier using weighted fuzzy mean method. The experimental processes with eight different shapes of aircraft images are presented to illustrate the high performance of the proposed classifier.

  • PDF

도심 영상에서의 비음수행렬분해를 이용한 차량 인식 (Vehicle Recognition using NMF in Urban Scene)

  • 반재민;이병래;강현철
    • 한국통신학회논문지
    • /
    • 제37권7C호
    • /
    • pp.554-564
    • /
    • 2012
  • 차량인식은 차량 후보영역 검출단계와 검출된 후보 영역에서 특징을 기반으로 차량을 검증하는 차량 검증단계로 나누어진다. 선형 변환 방식의 특징은 차원 감소 효과와 통계적인 특징을 지니게 되어, 이동이나 회전에 강인한 특성을 갖는다. 선형 변환 방식 중 비음수행렬분해(Non-negative Matrix Factorization, NMF)는 부분 기반 표현 방식으로 차량의 국소적인 특징을 기저벡터로 사용하여 희소성을 갖는 특징을 추출할 수 있기 때문에 도심영상에서 발생하는 차폐 영역에 따른 인식률 저하를 방지할 수 있다. 본 논문에서는 차량 인식에 적합한 NMF 특징 추출 방법을 제안하고, 인식률을 검증하였다. 또한 희소성 제약 조건을 이용하여 기저 벡터에 희소성을 가지는 SNMF(Sparse NMF)와 LVQ2(Learning Vector Quantization) 신경 회로망을 결합하여 차폐 영역에 대한 차량 인식 효율을 기존의 NMF를 이용한 방법과 비교하였다. NMF를 이용하는 특징은 차량이 혼재되어 차폐 영역이 빈번히 발생하는 도심에서도 강건한 특징임을 보였다.

Optimized Multiple Description Lattice Vector Quantization Coding for 3D Depth Image

  • Zhang, Huiwen;Bai, Huihui;Liu, Meiqin;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권3호
    • /
    • pp.1140-1154
    • /
    • 2015
  • Multiple Description (MD) coding is a promising alternative for the robust transmission of information over error-prone channels. Lattice vector quantization (LVQ) is a significant version of MD techniques to design an MD image coder. However, different from the traditional 2D texture image, the 3D depth image has its own special characteristics, which should be taken into account for efficient compression. In this paper, an optimized MDLVQ scheme is proposed in view of the characteristics of 3D depth image. First, due to the sparsity of depth image, the image blocks can be classified into edge blocks and smooth blocks, which are encoded by different modes. Furthermore, according to the boundary contents in edge blocks, the step size of LVQ can be regulated adaptively for each block. Experimental results validate the effectiveness of the proposed scheme, which show better rate distortion performance compared with the conventional MDLVQ.