• 제목/요약/키워드: LVQ 가중치 초기화

검색결과 3건 처리시간 0.015초

유전자 알고리즘을 이용한 구조 적응형 자기구성 지도의 자식 노드 가중치 초기화 (Optimal Weight Initialization of Structure-Adaptive Self-Organizing Map with Genetic Algorithm)

  • 김현돈;조성배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 제13회 춘계학술대회 및 임시총회 학술발표 논문집
    • /
    • pp.89-93
    • /
    • 2000
  • 구조 적응형 자기구성 지도는 일반적으로 자기구성 지도의 구조가 초기에 결정되어 학습이 끝날 때까지 변하지 않기 때문에 발생하는 문제를 해결하기 위해 지도의 구조를 학습 중에 적절하게 변경시킨다. 이때, 변화된 구조의 가중치를 어떻게 초기화시킬 것인가 하는 것이 중요한 문제이다. 이 논문에서는 기존의 비교사 학습방법에 LVQ 알고리즘을 이용한 교사 학습방법을 결합한 구조 적응형 자기구성 지도 모델에서 유전자 알고리즘을 이용하여 분화된 노드의 가중치를 결정하는 방법을 제안한다. 이 방법은 기존의 구조 적응형 자기구성 지도 알고리즘보다 빠르게 학습되었고, 인식률 면에서도 기존의 방법보다 높은 값을 나타내었으며, 자기구성 지도의 특성인 위상 보존도 잘 이루어졌다. 오프라인 필기 숫자 데이터로 실험한 결과, 제안한 방법이 유용함을 알 수 있었다.

  • PDF

웨이브렛 변환과 LVQ를 이용한 홍채인식 시스템 (Human Iris Recognition System using Wavelet Transform and LVQ)

  • 이관용;임신영;조성원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권7호
    • /
    • pp.389-398
    • /
    • 2000
  • The popular methods to check the identity of individuals include passwords and ID cards. These conventional method for user identification and authentication are not altogether reliable because they can be stolen and forgotten. As an alternative of the existing methods, biometric technology has been paid much attention for the last few decades. In this paper, we propose an efficient system for recognizing the identity of a living person by analyzing iris patterns which have a high level of stability and distinctiveness than other biometric measurements. The proposed system is based on wavelet transform and a competitive neural network with the improved mechanisms. After preprocessing the iris data acquired through a CCD camera, feature vectors are extracted by using Haar wavelet transform. LVQ(Learning Vector Quantization) is exploited to classify these feature vectors. We improve the overall performance of the proposed system by optimizing the size of feature vectors and by introducing an efficient initialization of the weight vectors and a new method for determining the winner in order to increase the recognition accuracy of LVQ. From the experiments, we confirmed that the proposed system has a great potential of being applied to real applications in an efficient and effective way.

  • PDF

유전자 알고리즘을 사용한 구조적응 자기구성 지도의 최적화 (Optimization of Structure-Adaptive Self-Organizing Map Using Genetic Algorithm)

  • 김현돈;조성배
    • 한국지능시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.223-230
    • /
    • 2001
  • 자기구성 지도는 주어진 입력에 대해 올바른 출력 값이 제공되지 않는 비교사 방식으로 학습된다. 또한, 반응하는 순서나 위치를 통해 위상이 보존(topology preserving)되는 특성을 가지고 있어 많은 분야에 응용되고 있다. 그러나, 자기 구성지도는 학습이 되기 전에 위상을 미리 고정시켜야 하기 때문에 실제 문제에 적용하기 어렵다는 단점을 가지고 있다. 구조 적응형 자기구성 지도는 자기구성 지도의 고정된 구조 때문에 발생하는 문제를 해결하기 위해 지도의 구조를 학습 중에 적절하게 변경시킨다. 이때, 변화된 구조의 가중치를 어떻게 초기화시킬 것인가 하는 것이 또한 중요한 문제이다. 이 논문에서는 구조 적응형 자기구성 지도 모델에서 유전자 알고리즘을 이용하여 분화된 노드의 가중치를 결정하는 방법을 제안한다. 이 방법은 기존의 구조 적응형 자기구성 지도보다 다소 높은 인식률을 보였고, 숫자 별 인식률 편차를 줄일 수 있었다. 오프라인 필기 숫자 데이터로 실험한 결과, 제안한 방법이 유용함을 알 수 있었다.

  • PDF