• Title/Summary/Keyword: LVQ

Search Result 107, Processing Time 0.023 seconds

A Study on Vehicle License Plate Recognition System (차량 번호판 인식 시스템에 관한 연구)

  • 한수환;우영운;박성대
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.346-351
    • /
    • 2002
  • 본 연구에서는 차량 번호판에서 추출된 문자영역의 DCT(Digital Cosine Transform) 계수와 LVQ (Learning Vector Quantization) 신경회로망을 이용하여 차량 번호판 인식 시스템을 구성하였다. 입력된 차량영상의 RGB 칼라정보를 이용하여 번호판 영역을 추출하고 추출된 번호판의 히스토그램과 문자의 상대적 위치정보를 병합하여 문자영역을 추출하였다. 이렇게 추출된 문자영역의 명암도 영상에 DCT를 적용하여 얻은 특징 벡터는 LVQ 신경회로망의 입력으로 사용되어 인식 과정을 수행한다. 제안된 시스템의 검증을 위하여 다양한 환경에서 촬영된 109대의 자가용 차량영상에 대하여 실험하여 상대적으로 높은 번호판 영역 추출율과 인식률을 보였다.

  • PDF

A Monitoring System for Sudden Infant Death Syndrome Prevention (유아 돌연사 증후군 방지를 위한 모니터링 시스템)

  • Jung, Kyung-Kwon;Hyun, Kyo-Hwan;Kim, Joo-Woong;Oh, Jung-Hoon;Joh, Hyung-Gook;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.481-484
    • /
    • 2008
  • Sudden infant death syndrome (SIDS) is the leading cause of unexplained death of an apparently healthy infant aged one month to one year. This paper presents a infant monitoring system which detects the movement of infants to prevent SIDS. The proposed system is composed of an movement sensing part and a motion detecting part. The movement sensing part uses a tri-axis accelerometer. The motion detecting part is based on the LVQ algorithm. The proposed monitoring system connects to an alarm for alerting a parent when an infant is in a predetermined position. We evaluated the performance of the monitoring system through experiments.

  • PDF

Realization of Forward Real-time Decoder using Sliding-Window with decoding length of 6 (복호길이 6인 Sliding-Window를 적용한 순방향 실시간 복호기 구현)

  • Park Ji woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.185-190
    • /
    • 2005
  • In IS-95 and IMT-2000 systems using variable code rates and constraint lengths, this paper limits code rate 1/2 and constraint length 3 and realizes forward real-time decoder using Sliding-Window with decoding length 6 and PVSL(Prototype Vector Selecting Logic), LVQ(Learning Vector Quantization) in Neural Network. In comparison condition to theoretically constrained AWGN channel environment at $S/(N_{0}/2)=1$ I verified the superiority of forward real-time decoder through hard-decision and soft-decision comparison between Viterbi decoder and forward real-time decoder such as BER and Secure Communication and H/W Structure.

Learning Reference Vectors by the Nearest Neighbor Network (최근점 이웃망에의한 참조벡터 학습)

  • Kim Baek Sep
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.170-178
    • /
    • 1994
  • The nearest neighbor classification rule is widely used because it is not only simple but the error rate is asymptotically less than twice Bayes theoretical minimum error. But the method basically use the whole training patterns as the reference vectors. so that both storage and classification time increase as the number of training patterns increases. LVQ(Learning Vector Quantization) resolved this problem by training the reference vectors instead of just storing the whole training patterns. But it is a heuristic algorithm which has no theoretic background there is no terminating condition and it requires a lot of iterations to get to meaningful result. This paper is to propose a new training method of the reference vectors. which minimize the given error function. The nearest neighbor network,the network version of the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule is proposed. The network is funtionally identical to the nearest neighbor classification rule and the reference vectors are represented by the weights between the nodes. The network is trained to minimize the error function with respect to the weights by the steepest descent method. The learning algorithm is derived and it is shown that the proposed method can adjust more reference vectors than LVQ in each iteration. Experiment showed that the proposed method requires less iterations and the error rate is smaller than that of LVQ2.

  • PDF

Hybrid Neural Classifier Combined with H-ART2 and F-LVQ for Face Recognition

  • Kim, Do-Hyeon;Cha, Eui-Young;Kim, Kwang-Baek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1287-1292
    • /
    • 2005
  • This paper presents an effective pattern classification model by designing an artificial neural network based pattern classifiers for face recognition. First, a RGB image inputted from a frame grabber is converted into a HSV image which is similar to the human beings' vision system. Then, the coarse facial region is extracted using the hue(H) and saturation(S) components except intensity(V) component which is sensitive to the environmental illumination. Next, the fine facial region extraction process is performed by matching with the edge and gray based templates. To make a light-invariant and qualified facial image, histogram equalization and intensity compensation processing using illumination plane are performed. The finally extracted and enhanced facial images are used for training the pattern classification models. The proposed H-ART2 model which has the hierarchical ART2 layers and F-LVQ model which is optimized by fuzzy membership make it possible to classify facial patterns by optimizing relations of clusters and searching clustered reference patterns effectively. Experimental results show that the proposed face recognition system is as good as the SVM model which is famous for face recognition field in recognition rate and even better in classification speed. Moreover high recognition rate could be acquired by combining the proposed neural classification models.

  • PDF

Design of Face Recognition System Based on Pose Estimation : Comparative Studies of Pose Estimation Algorithms (포즈 추정 기반 얼굴 인식 시스템 설계 : 포즈 추정 알고리즘 비교 연구)

  • Kim, Jin-Yul;Kim, Jong-Bum;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.672-681
    • /
    • 2017
  • This paper is concerned with the design methodology of face recognition system based on pose estimation. In 2-dimensional face recognition, the variations of facial pose cause the deterioration of recognition performance because object recognition is carried out by using brightness of each pixel on image. To alleviate such problem, the proposed face recognition system deals with Learning Vector Quantizatioin(LVQ) or K-Nearest Neighbor(K-NN) to estimate facial pose on image and then the images obtained from LVQ or K-NN are used as the inputs of networks such as Convolution Neural Networks(CNNs) and Radial Basis Function Neural Networks(RBFNNs). The effectiveness and efficiency of the post estimation using LVQ and K-NN as well as face recognition rate using CNNs and RBFNNs are discussed through experiments carried out by using ICPR and CMU PIE databases.

Fuzzy Neural Network Using a Learning Rule utilizing Selective Learning Rate (선택적 학습률을 활용한 학습법칙을 사용한 신경회로망)

  • Baek, Young-Sun;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.672-676
    • /
    • 2010
  • This paper presents a learning rule that weights more on data near decision boundary. This learning rule generates better decision boundary by reducing the effect of outliers on the decision boundary. The proposed learning rule is integrated into IAFC neural network. IAFC neural network is stable to maintain previous learning results and is plastic to learn new data. The performance of the proposed fuzzy neural network is compared with performances of LVQ neural network and backpropagation neural network. The results show that the performance of the proposed fuzzy neural network is better than those of LVQ neural network and backpropagation neural network.

A study of hybrid neural network to improve performance of face recognition (얼굴 인식의 성능 향상을 위한 혼합형 신경회로망 연구)

  • Chung, Sung-Boo;Kim, Joo-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2622-2627
    • /
    • 2010
  • The accuracy of face recognition used unmanned security system is very important and necessary. However, face recognition is a lot of restriction due to the change of distortion of face image, illumination, face size, face expression, round image. We propose a hybrid neural network for improve the performance of the face recognition. The proposed method is consisted of SOM and LVQ. In order to verify usefulness of the proposed method, we make a comparison between eigenface method, hidden Markov model method, multi-layer neural network.

A Study on Optimal Output Neuron Allocation of LVQ Neural Network using Variance Estimation (분산추정에 의한 LVQ 신경회로망의 최적 출력뉴런 분할에 관한 연구)

  • 정준원;조성원
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.239-242
    • /
    • 1996
  • 본 논문에서는 BP(Back Propagation)에 비해서 빠른 학습시간과 다른 경쟁학습 신경회로망 알고리즘에 비해서 비교적 우수한 성능으로 패턴인식 등에 많이 이용되고 있는 LVQ(Learning Vector Quantization) 알고리즘의 성능을 향상시키기 위한 방법을 논의하고자 한다. 일반적으로 LVQ는 음(negative)의 학습을 하기 때문에 초기 가중치가 제대로 설정되지 않으면 발산할 수 있다는 단점이 있으며, 경쟁학습 계열의 신경망이기 때문에 출력 층의 뉴런 수에 따라 성능에 큰 영향을 받는다고 알려져 있다.[1]. 지도학습 형태를 지닌 LVQ의 경우에 학습패턴이 n개의 클래스를 가지고, 각 클래스 별로 학습패턴의 수가 같은 경우에 일반적으로 전체 출력뉴런에 대해서 (출력뉴런수/n)개의 뉴런을 각 클래스의 목표(desired) 클러스터로 할당하여 학습을 수행하는데, 본 논문에서는 각 클래스에 동일한 수의 출력뉴런을 할당하지 않고, 학습데이터에서 각 클래스의 분산을 추정하여 각 클래스의 분산을 추정분산에 비례하게 목표 출력뉴런을 할당하고, 초기 가중치도 추정분산에 비례하게 각 클래스의 초기 임의 위치 입력백터를 사용하여 학습을 수행하는 방법을 제안한다. 본 논문에서 제안하는 방법은 분류하고자 하는 데이터에 대해서 필요한 최적의 출력뉴런 수를 찾는 것이 아니라 이미 결정되어 있는 출력뉴런 수에 대해서 각 클래스에 할당할 출력 뉴런 수를 데이터의 추정분산에 의해서 결정하는 것으로, 추정분산이 크면 상대적으로 많은 출력 뉴런을 할당하고 작으면 상대적으로 적은 출력뉴런을 할당하고 초기 가중치도 마찬가지 방법으로 결정하며, 이렇게 하면 정해진 출력뉴런 개수 안에서 각 클래스 별로 분류의 어려움에 따라서 출력뉴런을 할당하기 때문에 미학습 뉴런이 줄어들게 되어 성능의 향상을 기대할 수 있으며, 실험적으로 제안된 방법이 더 나은 성능을 보임을 확인했다.initially they expected a more practical program about planting than programs that teach community design. Many people are active in their own towns to create better environments and communities. The network system "Alpha Green-Net" is functional to support graduates of the course. In the future these educational programs for citizens will becomes very important. Other cities are starting to have their own progrms, but they are still very short term. "Alpha Green-Net" is in the process of growing. Many members are very keen to develop their own abilities. In the future these NPOs should become independent. To help these NPOs become independent and active the educational programs should consider and teach about how to do this more in the future.단하였는데 그 결과, 좌측 촉각엽에서 제4형의 신경연접이 퇴행성 변화를 나타내었다. 그러므로 촉각의 지각신경세포는 뇌의 같은 족 촉각엽에 뻗어와 제4형 신경연접을 형성한다고 결론되었다.$/ 값이 210 $\mu\textrm{g}$/$m\ell$로서 효과적인 저해 활성을 나타내었다 따라서, 본 연구에서 빈

  • PDF

Fuzzy Mean Method with Bispectral Features for Robust 2D Shape Classification

  • Woo, Young-Woon;Han, Soo-Whan
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.313-320
    • /
    • 1999
  • In this paper, a translation, rotation and scale invariant system for the classification of closed 2D images using the bispectrum of a contour sequence and the weighted fuzzy mean method is derived and compared with the classification process using one of the competitive neural algorithm, called a LVQ(Learning Vector Quantization). The bispectrun based on third order cumulants is applied to the contour sequences of the images to extract fifteen feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images and are fed into an classifier using weighted fuzzy mean method. The experimental processes with eight different shapes of aircraft images are presented to illustrate the high performance of the proposed classifier.

  • PDF