• Title/Summary/Keyword: LVC Training System

Search Result 14, Processing Time 0.02 seconds

Applied Practices on the Application of VR/AR/MR Technologies to LVC Training Systems

  • Jong-Hoon Lee;Hun-Keun Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.149-159
    • /
    • 2023
  • The Republic of Korea (ROK) Army is developing the Army Synthetic Battlefield Training System and plans divisional-level Live, Virtual, and Constructive (LVC) integrated training. This study proposes a plan to apply VR/AR/MR (Virtual Reality/Augmented Reality/Mixed Reality) technology to LVC integrated training systems to enhance the efficiency and effectiveness of future LVC integrated training. The study investigated immersive military training systems in the ROK and advanced countries. As a result, we confirm that immersive technology can significantly improve the efficiency and effectiveness of military training. Accordingly, we review the key technologies required for building a defense training system with immersive features and propose training subjects that can be enhanced in effectiveness and efficiency when built with an immersive approach. We also propose a plan to apply immersive technology to the Live, Virtual, and Constructive systems for the development of future LVC integrated training system.

Study on the Architecture of Combat Training Center LVC-System (과학화 전투훈련장 LVC-체계의 상위 구조 연구)

  • Choi, Sang-Yeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.80-87
    • /
    • 2008
  • The LVC(Live, Virtual, Constructive) system of CTC(Combat Training Center) is at the very cutting edge of modeling and simulation technology, which has become widely accepted an enabler for a new military training transformation. In this paper, the architecture of LVC system is proposed for the Korean brigade-level CTC, and high level operational architecture, system architecture, and technical standard architecture are suggested.

Evaluation of the Effectiveness of the Air Force LVC Training System Using AHP (AHP를 활용한 공군 LVC 합성전장훈련체계 효용성 평가)

  • Jaehong Lee;Byungho Jung;Namkyu Lim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.209-217
    • /
    • 2023
  • In this study, the evaluation items related to the effectiveness evaluation of the LVC (Live, Virtual, Constructive) training system of the Air Force were derived and the weights of each item were analyzed. The LVC training system evaluation items for AHP (Analytic Hierarchy Process) analysis were divided into three layers, and according to the level, 3 items were derived at level 1, 11 items at level 2, and 33 items at level 3. For weight analysis of evaluation items, an AHP-based pairwise comparison questionnaire was conducted for Air Force experts related to the LVC training system. As a result of the survey, related items such as (1) Achievement of education and training goals (53.8%), (1.2) Large-scale mission and operational performance (25.5%), and (1.2.1) Teamwork among training participants (19.4%) was highly rated. Also, it was confirmed that the weights of evaluation items were not different for each expert group, that is, the priority for importance was evaluated in the same order between the policy department and the working department. Through these analysis results, it will be possible to use them as evaluation criteria for new LVC-related projects of the Air Force and selection of introduction systems.

The Design and implementation of LVC Integrated Architecture Technology building division-level L-V-C Interoperability Training System (사단급 L-V-C연동훈련체계 구축을 위한 LVC통합아키텍쳐기술 설계 및 구현)

  • Won, Kyoungchan;Koo, JaHwan;Lee, Hojun;Kim, Yong-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.334-342
    • /
    • 2021
  • In Korea, the training is performed through independent environments without interoperability among L-V-C systems. In the L system, training for large units is limited due to civil complaints at the training grounds and road restrictions. The V system is insufficient in training related to tactical training, and the C system lacks practicality due to a lack of combat friction elements. To achieve synchronicity and integration training between upper and lower units, it is necessary to establish a system to ensure integrated training for each unit by interoperating the currently operating L, V, and C systems. The interoperability between the C-C system supports Korea-US Combined Exercise. On the other hand, the actual development of the training system through the interoperability of L, V, and C has not been made. Although efforts are being made to establish the L, V, and C system centering on the Army, the joint composite battlefield and LVC integrated architecture technology are not yet secured. Therefore, this paper proposes a new plan for the future training system by designing and implementing the LVC integrated architecture technology, which is the core technology that can build the L-V-C interoperability training system. In conclusion, a division-level L-V-C interoperability training system can be established in the future by securing the LVC integrated architecture technology.

Development of Framework for Effectiveness Measurement of LVC Synthetic Battlefield Training System (LVC 합성전장 훈련체계 효과도 측정 프레임워크 개발)

  • Kwon, Kybeom;Min, Seungin;Yee, Kwanjung;Seol, Hyeonju;Oh, Jihyun;Sim, Inbo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.704-713
    • /
    • 2018
  • The purpose of this study is to develop a systematic framework that can scientifically and quantitatively evaluate the effectiveness of an LVC training system. The proposed framework is based on QFD(Quality Function Development) methodology. The process of developing the framework begins with identifying various needs of stakeholders related to the introduction of the LVC training system. Then the effectiveness areas and factors are derived based on the needs. The measured effectiveness for each factors on alternatives by L, V, C systems are finally synthesized into the one overall effectiveness of each training system for relative comparison among them. In addition, we developed an Excel$^{TM}$-based tool based on the proposed framework methodology to provide an ease-of-use environment for rapid evaluation on the effectiveness of each training system with the given stakeholder need importance combinations, training scenarios and assets. The suggested framework and the measurement tool are expected to be useful for efficient knowledge-based decision making on an acquisition of the LVC training system.

A Study on the Interoperability of ROK Air Force Virtual and Constructive Simulation (공군 전투기 시뮬레이터와 워게임 모델의 V-C 연동에 대한 연구)

  • Kim, Yong Hwan;Song, Yong Seung;Kim, Chang Ouk
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.169-177
    • /
    • 2019
  • LVC(Live-Virtual-Constructive) training system is drawing attention due to changes in battlefield situation and the development of advanced information and communication technologies. The ROKAF(Republic of Korea Air Force) plans to construct LVC training system capable of scientific training. This paper analyzes the results of V-C interoperability test with three fighter simulators as virtual systems and a theater-level wargame model as a constructive system. The F-15K, KF-16, and FA-50 fighter simulators, which have different interoperable methods, were converted into a standard for simulation interoperability. Using the integrated field environment simulator, the fighter simulators established a mutually interoperable environment. In addition, the Changgong model, which is the representative training model of the Air Force, was converted to the standard for simulation interoperability, and the integrated model was implemented with optimized interoperability performance. Throughput experiments, It was confirmed that the fighter simulators and the war game model of the ROKAF could be interoperable with each other. The results of this study are expected to be a good reference for the future study of the ROKAF LVC training system.

Study on the application of VR/AR technology to the future ROK Army Synthetic Battlespace Training System (미래 육군합성전장훈련체계에 VR/AR 기술 적용방안 연구)

  • Jong-Hoon Lee;Junwook Park
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.189-197
    • /
    • 2023
  • The Republic of Korea Army (ROK Army) is currently developing the Army Synthetic Battle Training System (ASBTS) by 2026 and will use it to advance division-level LVC integrated training. This study proposes a way to improve the effectiveness and efficiency of training by applying VR/AR technology to the ASBTS. To this end, we analyzed cases of VR/AR technology use in the defense field in advanced countries and the ROK military. As a result, we confirmed that the effectiveness and efficiency of training can be improved when the training system is converted to an immersive system. Accordingly, we selected and presented defense training subjects to be applied to VR/AR technology, considered the development direction for applying VR/AR technology to the ASBTS, and proposed a way to apply VR/AR technology to the ASBTS.

Development of an ACMI Simulator Based on LVC Integrating Architecture (LVC 통합 아키텍처 기반 실기동급 ACMI 모의기 개발)

  • Jang, Youngchan;Oh, Jihyun;Myung, Hyunsam;Kim, Cheonyoung;Hong, Youngseok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.540-547
    • /
    • 2015
  • This paper describes development contents and flight tests of an ACMI simulator based on LVC integrating architecture. ACMI is the system that provides air combat training and ground bombing training for improving fighting efficiency, that is the live simulation involving real people to operate real systems. ACMI simulator was developed for technic acquisition of LVC interoperability by using data link communication. ACMI simulator simulated maneuvering of a fighter by operating an UAV, a fighter can be distinguished from an UAV by maneuvering characteristics. This study proposes maneuvering simulation method by using flight data of the UAV, and performed its flight test for verifying similarity of fighter maneuvering.

Time Synchronization Scheme of Cyber-Physical Systems for Military Training Systems (국방 훈련체계용 가상물리시스템 시간 동기화 기법)

  • Hong, Seok-Joon;Lee, Woo-Yeob;Joe, In-Whee;Kim, Won-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1814-1823
    • /
    • 2016
  • LVC(live-virtual-constructive) integrated training system is a representative cyber-physical system. Each systems in a LVC system has different time domain, resolution and operation methods. So, it is very important to integrate different middlewares as a common middleware for heterogeneous systems using inter-working GWs. Especially, since the LVC system uses different time, it is necessary to study the method for guaranteeing causality and time synchronization among the events from different systems. In this study, we propose an time synchronization scheme to integrate the virtual and constructive system which use the simulation time of HLA (High Level Architecture)/ RTI (Run Time Infrastructure) into the live system based on the OMG DDS (Data Distribution Service). We propose a precise time synchronization scheme based on HLA time management and clock federate between participants and federates which are the communication objects of DDS and HLA/RTI respectively. In addition, we verified that time is well-synchronized among heterogeneous systems using the suggested scheme by implementing and demonstrating simulation applications on each middleware.

SIA-LVC : Scalable Interworking Architecture for Military L-V-C Training Systems Based on Data Centric Middleware (SIA-LVC: 데이터 중심 미들웨어 기반 확장성 있는 국방 L-V-C 훈련체계 연동 아키텍쳐)

  • Kim, Won-Tae;Park, Seung-Min
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.11
    • /
    • pp.393-402
    • /
    • 2016
  • A Military L-V-C system consists of distributed complex systems integrating Live systems working on physical wall-clock time, Virtual systems ruled by virtually pseudo realtime events on a computer, and Constructive systems only depending on the causal relationship between the continuous events. Recently many needs for L-V-C training systems are increasing in order to achieve the maximum training effects with low costs. While theoretical/logical researches or only partially interworking technologies have been proposed, there are few perfect interworking architectures for totally interoperating L-V-C systems in world-wide. In this paper, we design and develop a novel interworking architecture based on data centric middleware for the consistent global time with the same states on the entire L-V-C data and events by means of integrating the heterogeneous distributed middleware standards of each L-V-C system. In addition, simulated L-V-C systems based on real systems will be used for the efficiency and performance of the developed interworking architecture.