• Title/Summary/Keyword: LTP (Long range Transport Pollutants)

Search Result 3, Processing Time 0.017 seconds

Analysis of the Recent Trend of National Background PM10 Concentrations over Korea, China, and Japan (한·중·일 PM10 국가 배경농도 최근 경향 분석)

  • Yang, Geum-Hee;Lee, Jong-Jae;Lyu, Young-Sook;Chang, Lim-Seok;Lim, Jae Hyun;Lee, Dong-Won;Kim, Sang-Kyun;Kim, Cheol-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.4
    • /
    • pp.360-371
    • /
    • 2016
  • The goal of this research is to examine the recent decade-long (2000~2014) trends of national background concentrations over China, Japan, and Korea. Based on the Long-range Transboundary Air Pollutants in Northeast Asia (LTP) project, which is three-party collaboration project among three countries, we investigated the long-term trends of national background $PM_{10}$ concentrations in three countries over the recent 15 years, including the 2008 Beijing Olympic Game period. In accordance with the agreement among three countries, a total of 8 national background sites: three national background monitoring sites in China (2 sites in Dalian, and 1 in Xiamen), three sites in Korea (Ganghwa, Gosan, and Taean), and two sites in Japan (Oki and Rishiri), were chosen for the trend analysis. The results showed that Chinese background concentration recorded the highest level overall. However, the rapid declining recent trends of annual median ($50^{th}$-percentile) values were surprisingly detected since 2006 or 2007 in every site in China, with the most rapidly decreasing rate (- $18.6{\pm}10.3%$/year) over 2006~2007, and the second most rapidly decreasing rate (- $18.0{\pm}1.5%$/year) over 2007~2008. Based on the previous statistical literature, we concluded that this declining trends were due to the emission reduction of $PM_{10}$ concentrations in China for 2008 Beijing Olympic Game. In Korea, Ganghwa was also showing the decreasing trends over the recent years since 2006, which is also well accorded with the decreasing period of Chinese background concentrations. Taean also implied some impact of Beijing Olympic Game, showing small but detectable decreasing trends, while Gosan showed the increasing tendencies probably due to the near-urban influences. However, since 2012, most sites in both China and Korea showed strong increasing trends, undoubtedly implying the increasement of both emission in China and its long-range transport process toward Korea. Two sites in Japan, Oki and Rishiri recorded the lowest level of $PM_{10}$ level during whole period with the smallest deviations of measurements. Other discussions including the decade-long trends of $5^{th}$, $10^{th}$, $25^{th}$, $50^{th}$, $75^{th}$, $90^{th}$, $95^{th}$-percentiles of $PM_{10}$ background concentrations in three countries were also comparatively addressed here.

Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations (대기오염집중측정소별 2013~2015년 사이의 PM2.5 화학적 특성 차이 및 유발인자 조사)

  • Yu, Geun Hye;Park, Seung Shik;Ghim, Young Sung;Shin, Hye Jung;Lim, Cheol Soo;Ban, Soo Jin;Yu, Jeong Ah;Kang, Hyun Jung;Seo, Young Kyo;Kang, Kyeong Sik;Jo, Mi Ra;Jung, Sun A;Lee, Min Hee;Hwang, Tae Kyung;Kang, Byung Chul;Kim, Hyo Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.16-37
    • /
    • 2018
  • In this study, difference in chemical composition of $PM_{2.5}$ observed between the year 2013 and 2015 at six air quality intensive monitoring stations (Bangryenogdo (BR), Seoul (SL), Daejeon (DJ), Gwangju (GJ), Ulsan (US), and Jeju (JJ)) was investigated and the possible factors causing their difference were also discussed. $PM_{2.5}$, organic and elemental carbon (OC and EC), and water-soluble ionic species concentrations were observed on a hourly basis in the six stations. The difference in chemical composition by regions was examined based on emissions of gaseous criteria pollutants (CO, $SO_2$, and $NO_2$), meteorological parameters (wind speed, temperature, and relative humidity), and origins and transport pathways of air masses. For the years 2013 and 2014, annual average $PM_{2.5}$ was in the order of SL ($${\sim_=}DJ$$)>GJ>BR>US>JJ, but the highest concentration in 2015 was found at DJ, following by GJ ($${\sim_=}SJ$$)>BR>US>JJ. Similar patterns were found in $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$. Lower $PM_{2.5}$ at SL than at DJ and GJ was resulted from low concentrations of secondary ionic species. Annual average concentrations of OC and EC by regions had no big difference among the years, but their patterns were distinct from the $PM_{2.5}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ concentrations by regions. 4-day air mass backward trajectory calculations indicated that in the event of daily average $PM_{2.5}$ exceeding the monthly average values, >70% of the air masses reaching the all stations were coming from northeastern Chinese polluted regions, indicating the long-range transportation (LTP) was an important contributor to $PM_{2.5}$ and its chemical composition at the stations. Lower concentrations of secondary ionic species and $PM_{2.5}$ at SL in 2015 than those at DJ and GJ sites were due to the decrease in impact by LTP from polluted Chinese regions, rather than the difference in local emissions of criteria gas pollutants ($SO_2$, $NO_2$, and $NH_3$) among the SL, DJ, and GJ sites. The difference in annual average $SO{_4}^{2-}$ by regions was resulted from combination of the difference in local $SO_2$ emissions and chemical conversion of $SO_2$ to $SO{_4}^{2-}$, and LTP from China. However, the $SO{_4}^{2-}$ at the sites were more influenced by LTP than the formation by chemical transformation of locally emitted $SO_2$. The $NO_3{^-}$ increase was closely associated with the increase in local emissions of nitrogen oxides at four urban sites except for the BR and JJ, as well as the LTP with a small contribution. Among the meterological parameters (wind speed, temperature, and relative humidity), the ambient temperature was most important factor to control the variation of $PM_{2.5}$ and its major chemical components concentrations. In other words, as the average temperature increases, the $PM_{2.5}$, OC, EC, and $NO_3{^-}$ concentrations showed a decreasing tendency, especially with a prominent feature in $NO_3{^-}$. Results from a case study that examined the $PM_{2.5}$ and its major chemical data observed between February 19 and March 2, 2014 at the all stations suggest that ambient $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations are not necessarily proportional to the concentrations of their precursor emissions because the rates at which they form and their gas/particle partitioning may be controlled by factors (e.g., long range transportation) other than the concentration of the precursor gases.

The Research Trend of Asian Dust Storm (AD) of Korea and Recent Episode Analysis (황사의 국내 연구동향과 최근 에피소드 분석)

  • Park, Jin Soo;Han, Jin Seok;Ahn, Joon Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.553-573
    • /
    • 2013
  • This paper aims to give a summary and review of the research trend about subjects of Asian Dust (AD) storm in the last three decades. The AD research was focused on classification of synoptic scale data and finding inflow pathway in early stage. Recently, new approaches have been made to explain chemical composition, transportation, transboundary movement reaction of AD, using satellite data, 3D modeling, the aerosol time of flight mass spectroscopy, etc. During AD events, a large amount of dust particles flow into Korea and Japan from AD source areas, and they are highly likely to be mixed with toxic substances when air mass contained AD particles pass over seriously polluted areas. We concluded that, considering that AD events were classified into two cases according to the source area and pathway, the concentrations of crustal components did not increase at the initial stage of AD events, Whereas ammonium-sulfate, trace metal element, OC, EC relatively increased in the early stage. This explains AD events have the possibility of being accompanied with polluted air mass or particles. Also, we further need to compare and summarize the results of AD studies which already have been conducted, and prepare strategies for particle management, particularly for Black Carbon (BC) and Brown Carbon (BrC) which are considered to induce climate change effects.