• Title/Summary/Keyword: LTE-advanced

Search Result 252, Processing Time 0.021 seconds

Monitoring of Tidal Sand Shoal with a Camera Monitoring System and its Morphologic Change (카메라를 활용한 조석사주 관측시스템 구축 및 지형변화)

  • Lee, Soong-Ji;Lee, Guan-Hong;Kang, Tae-Soon;Kim, Young-Taeg;Kim, Tea-Lim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.326-333
    • /
    • 2015
  • A tidal sandshoal, called 'Puldeung' in the Daeijackdo Marine Protected Area(DMPA), is facing erosion due to sand mining in the nearby coastal region. To monitor the morphologic change and erosion of Puldeung, a camera monitoring system was established at the top of Song-Ee Mountain in Daeijack Island. The system consists of 2 Cannon digital cameras, Eye-fi memory card/Long-Term Evolution wireless network, and solar power supply. The acquired camera images were analyzed to obtain the area of Puldeung by the following methods: geometric correction of image, identification of shoreline, areal measurement of Puldeung and its error estimation. To compare the Puldeung area with previously measured area of 1.79 km2 at tidal height of 137 cm in 2008 and of 1.59 km2 at tidal height of 148 cm in 2010, we selected images with same tidal heights. The Puldeung area was 1.37 and 1.23 km2 at the tidal height of 137 and 148 cm, respectively. The erosion at DMPA is very severe and thus it is imperative to initiate the morphodynamical study on the seasonal variation and long-term evolution of Puldeung as well as the causes and measures of Puldeung erosion.

Resource Allocation Scheme for Multiple Device-to-Device Communications in a Multicell Network (다중 셀 네트워크에서 다중 D2D 통신 자원할당 기법)

  • Kim, Hyeon-Min;Kang, Gil-Mo;Shin, Oh-Soon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.9
    • /
    • pp.18-25
    • /
    • 2016
  • In D2D communications underlaying a multicell network, it is of primary importance to ensure coexistence of cellular links and D2D links with minimal interference. Therefore, resource allocation scheme for D2D links should be designed to limit the interference between cellular links and D2D links. In this paper, we propose an effective resource allocation scheme for multiple D2D links which share the uplink spectrum resource with cellular users in a multicell network. Under the assumption that the locations of users are known to the base station, the proposed scheme allocates cellular resources to D2D links, such that the interference between a cellular link and multiple D2D links is minimized. In particular, we compute two constants from the path loss model and then use the constants to protect both cellular and D2D links. Simulation results are provided to verify the performance of the proposed scheme.