• Title/Summary/Keyword: LSV, Low speed vehicle

Search Result 2, Processing Time 0.017 seconds

Structural Analysis and Optimization of a Low Speed Vehicle Body (저속차량 차체의 구조해석 및 구조최적설계)

  • 신정규;심진욱;황상진;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.68-78
    • /
    • 2003
  • Recently, low speed vehicle (LSV) is beginning to appear for various usages. The body of the LSV is usually made of the aluminum space frame (ASF) type rather than the monocoque or unitary construction type. A pa.1 of the reason is that it is easier to reduce mass efficiently while the required stiffness and strength are maintained. A design flow for LSV is proposed. Design specifications for structural performances of LSV do not exist yet. Therefore, they are defined through a comparative study with general passenger automobiles. An optimization problem is formulated by the defined specifications. At first, one pillar which has an important role in structural performances is selected and the reinforcements of the pillar are determined from topology optimization to maximize the stiffness. At second, the thicknesses of cross sections are determined to minimize the mass of the body while design specifications are satisfied. The optimum solution is compared with an existing design. The optimization process has been performed using a commercial optimization software system, GENESIS 7.0.

Durability Performance Analysis of a Differential Gear for a Low Speed Vehicles (저속차량 차동장치의 내구성능 해석)

  • Cheon, Jong-Pil;Pyoun, Young-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.897-902
    • /
    • 2012
  • Low speed vehicle(LSV), golf carts have unique requirements to differential gear design. For double axle torque LSV differential loading conditions were determined with the help of analytical model and ANSYS finite element analysis. With stress safety factor 3.15, fatigue safety factor 1.08 and fatigue life 106 cycle ring gear teeth strength analysis is performed and structure design optimized. This allows reducing overall cost of differential unit.