• Title/Summary/Keyword: LSTM-RNN

Search Result 203, Processing Time 0.019 seconds

Automatic Text Summarization based on Selective Copy mechanism against for Addressing OOV (미등록 어휘에 대한 선택적 복사를 적용한 문서 자동요약)

  • Lee, Tae-Seok;Seon, Choong-Nyoung;Jung, Youngim;Kang, Seung-Shik
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.58-65
    • /
    • 2019
  • Automatic text summarization is a process of shortening a text document by either extraction or abstraction. The abstraction approach inspired by deep learning methods scaling to a large amount of document is applied in recent work. Abstractive text summarization involves utilizing pre-generated word embedding information. Low-frequent but salient words such as terminologies are seldom included to dictionaries, that are so called, out-of-vocabulary(OOV) problems. OOV deteriorates the performance of Encoder-Decoder model in neural network. In order to address OOV words in abstractive text summarization, we propose a copy mechanism to facilitate copying new words in the target document and generating summary sentences. Different from the previous studies, the proposed approach combines accurate pointing information and selective copy mechanism based on bidirectional RNN and bidirectional LSTM. In addition, neural network gate model to estimate the generation probability and the loss function to optimize the entire abstraction model has been applied. The dataset has been constructed from the collection of abstractions and titles of journal articles. Experimental results demonstrate that both ROUGE-1 (based on word recall) and ROUGE-L (employed longest common subsequence) of the proposed Encoding-Decoding model have been improved to 47.01 and 29.55, respectively.

A Non-annotated Recurrent Neural Network Ensemble-based Model for Near-real Time Detection of Erroneous Sea Level Anomaly in Coastal Tide Gauge Observation (비주석 재귀신경망 앙상블 모델을 기반으로 한 조위관측소 해수위의 준실시간 이상값 탐지)

  • LEE, EUN-JOO;KIM, YOUNG-TAEG;KIM, SONG-HAK;JU, HO-JEONG;PARK, JAE-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.307-326
    • /
    • 2021
  • Real-time sea level observations from tide gauges include missing and erroneous values. Classification as abnormal values can be done for the latter by the quality control procedure. Although the 3𝜎 (three standard deviations) rule has been applied in general to eliminate them, it is difficult to apply it to the sea-level data where extreme values can exist due to weather events, etc., or where erroneous values can exist even within the 3𝜎 range. An artificial intelligence model set designed in this study consists of non-annotated recurrent neural networks and ensemble techniques that do not require pre-labeling of the abnormal values. The developed model can identify an erroneous value less than 20 minutes of tide gauge recording an abnormal sea level. The validated model well separates normal and abnormal values during normal times and weather events. It was also confirmed that abnormal values can be detected even in the period of years when the sea level data have not been used for training. The artificial neural network algorithm utilized in this study is not limited to the coastal sea level, and hence it can be extended to the detection model of erroneous values in various oceanic and atmospheric data.

Overseas Address Data Quality Verification Technique using Artificial Intelligence Reflecting the Characteristics of Administrative System (국가별 행정체계 특성을 반영한 인공지능 활용 해외 주소데이터 품질검증 기법)

  • Jin-Sil Kim;Kyung-Hee Lee;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • In the global era, the importance of imported food safety management is increasing. Address information of overseas food companies is key information for imported food safety management, and must be verified for prompt response and follow-up management in the event of a food risk. However, because each country's address system is different, one verification system cannot verify the addresses of all countries. Also, the purpose of address verification may be different depending on the field used. In this paper, we deal with the problem of classifying a given overseas food business address into the administrative district level of the country. This is because, in the event of harm to imported food, it is necessary to find the administrative district level from the address of the relevant company, and based on this trace the food distribution route or take measures to ban imports. However, in some countries the administrative district level name is omitted from the address, and the same place name is used repeatedly in several administrative district levels, so it is not easy to accurately classify the administrative district level from the address. In this study we propose a deep learning-based administrative district level classification model suitable for this case, and verify the actual address data of overseas food companies. Specifically, a method of training using a label powerset in a multi-label classification model is used. To verify the proposed method, the accuracy was verified for the addresses of overseas manufacturing companies in Ecuador and Vietnam registered with the Ministry of Food and Drug Safety, and the accuracy was improved by 28.1% and 13%, respectively, compared to the existing classification model.