• 제목/요약/키워드: LSTM algorithm

검색결과 201건 처리시간 0.023초

국내 특허 문헌 내 화학 용어 자동 추출을 위한 알고리즘 연구 (A study on the Algorithm for automated extraction for chemical term in Korean patents)

  • 이하영;김홍기;박진우
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.273-276
    • /
    • 2019
  • 본 논문에서는 열 및 전기특성 플라스틱 복합수지와 한글에 특화된 인공지능 기술을 개발하기 위한 조성/물성 정보 복합수지 지식베이스를 구축하고자 국내 특허 문헌에서 화학 용어를 추출하고자 한다. 이를 위해 전문용어가 많이 쓰인 특허 문헌의 특수성을 고려하여 UIMA(Unstructured Information Management Architecture) 규칙 기반의 라이브러리를 사용해 한국어 화학 용어 코퍼스를 구축하고 이를 기반으로 딥러닝 알고리즘 중 하나인 Bidirectional LSTM-CRF를 기반으로 특허 문헌에서 화학 용어를 자동으로 추출하는 알고리즘을 연구하고자 한다.

  • PDF

A Study on Korean Sentiment Analysis Rate Using Neural Network and Ensemble Combination

  • Sim, YuJeong;Moon, Seok-Jae;Lee, Jong-Youg
    • International Journal of Advanced Culture Technology
    • /
    • 제9권4호
    • /
    • pp.268-273
    • /
    • 2021
  • In this paper, we propose a sentiment analysis model that improves performance on small-scale data. A sentiment analysis model for small-scale data is proposed and verified through experiments. To this end, we propose Bagging-Bi-GRU, which combines Bi-GRU, which learns GRU, which is a variant of LSTM (Long Short-Term Memory) with excellent performance on sequential data, in both directions and the bagging technique, which is one of the ensembles learning methods. In order to verify the performance of the proposed model, it is applied to small-scale data and large-scale data. And by comparing and analyzing it with the existing machine learning algorithm, Bi-GRU, it shows that the performance of the proposed model is improved not only for small data but also for large data.

Malaysian Name-based Ethnicity Classification using LSTM

  • Hur, Youngbum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.3855-3867
    • /
    • 2022
  • Name separation (splitting full names into surnames and given names) is not a tedious task in a multiethnic country because the procedure for splitting surnames and given names is ethnicity-specific. Malaysia has multiple main ethnic groups; therefore, separating Malaysian full names into surnames and given names proves a challenge. In this study, we develop a two-phase framework for Malaysian name separation using deep learning. In the initial phase, we predict the ethnicity of full names. We propose a recurrent neural network with long short-term memory network-based model with character embeddings for prediction. Based on the predicted ethnicity, we use a rule-based algorithm for splitting full names into surnames and given names in the second phase. We evaluate the performance of the proposed model against various machine learning models and demonstrate that it outperforms them by an average of 9%. Moreover, transfer learning and fine-tuning of the proposed model with an additional dataset results in an improvement of up to 7% on average.

Design and evaluation of artificial intelligence models for abnormal data detection and prediction

  • Hae-Jong Joo;Ho-Bin Song
    • Journal of Platform Technology
    • /
    • 제11권6호
    • /
    • pp.3-12
    • /
    • 2023
  • In today's system operation, it is difficult to detect failures and take immediate action in the case of a shortage of manpower compared to the number of equipment or failures in vulnerable time zones, which can lead to delays in failure recovery. In addition, various algorithms exist to detect abnormal symptom data, and it is important to select an appropriate algorithm for each problem. In this paper, an ensemble-based isolation forest model was used to efficiently detect multivariate point anomalies that deviated from the mean distribution in the data set generated to predict system failure and minimize service interruption. And since significant changes in memory space usage are observed together with changes in CPU usage, the problem is solved by using LSTM-Auto Encoder for a collective anomaly in which another feature exhibits an abnormal pattern according to a change in one by comparing two or more features. did In addition, evaluation indicators are set for the performance evaluation of the model presented in this study, and then AI model evaluation is performed.

  • PDF

시계열 분석 딥러닝 알고리즘을 적용한 낙동강 하굿둑 염분 예측 (Prediction of Salinity of Nakdong River Estuary Using Deep Learning Algorithm (LSTM) for Time Series Analysis)

  • 우정운;김연중;윤종성
    • 한국해안·해양공학회논문집
    • /
    • 제34권4호
    • /
    • pp.128-134
    • /
    • 2022
  • 낙동강 하굿둑은 올해 2022년 해수 유입기간을 매월 대조기마다로 확대, 하굿둑 상류 15 km 이내로 기수역 조성을 목표로 운영되고 있다. 목표 기수역 조성구간 및 염수피해 방지를 위한 신속한 의사결정을 위해 본 연구에서는 딥러닝 알고리즘 Long Short-Term Memory(LSTM)을 적용하여 낙동대교(하굿둑 상류 약 5 km)지점의 염분 예측을 수행하였다. 창녕·함안보 방류량 등 낙동강 하구역의 시·공간적 특성을 반영하기 위한 입력데이터를 구축하였으며, Sequence length에 따른 정도 변화를 통해 낙동강 하구역의 수리학적 특성을 고려한 최적모델을 구축하였다. 예측 정확도는 결정계수(R-squred)와 RMSE(root mean square error) 이용하여 통계분석을 실시하였으며. Sequence length가 12일 때 R-squred 0.997, RMSE 0.122로 가장 정도가 높았으며, 선행 예측시간은 12시간 간격까지 R -squred 0.93 이상으로 높은 정도를 보였다.

RNN 기반 디지털 센서의 Rising time과 Falling time 고장 검출 기법 (An RNN-based Fault Detection Scheme for Digital Sensor)

  • 이규형;이영두;구인수
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.29-35
    • /
    • 2019
  • 4차 산업 혁명이 진행되며 많은 회사들의 스마트 팩토리에 대한 관심이 커지고 있으며 센서의 중요성 또한 대두되고 있다. 정보를 수집하기 위한 센서에서 고장이 발생하면 공장을 최적화하여 운영할 수 없기 때문에 이에 따른 손해가 발생할 수 있다. 이를 위해 센서의 상태를 진단하여 센서의 고장을 진단하는 일이 필요하다. 본 논문에서는 디지털 센서의 고장유형 중 Rising time과 Falling time 고장을 딥러닝 알고리즘 RNN의 LSTM을 통해 신호를 분석하여 고장을 진단하는 모델을 제안한다. 제안한 방식의 실험 결과를 정확도와 ROC 곡선 그래프의 AUC(Area under the curve)를 이용하여 Rule 기반 고장진단 알고리즘과 비교하였다. 실험 결과, 제안한 시스템은 Rule 기반 고장진단 알고리즘 보다 향상되고 안정된 성능을 보였다.

페이스북 딥러닝 알고리즘을 이용한 암호화폐 자동 매매 연구 (Cryptocurrency automatic trading research by using facebook deep learning algorithm)

  • 홍성혁
    • 디지털융복합연구
    • /
    • 제19권11호
    • /
    • pp.359-364
    • /
    • 2021
  • 최근 인공지능의 딥러닝과 머신러닝을 이용한 예측시스템에 관한 연구가 활발히 진행되고 있다. 인공지능의 발전으로 인해 투자관리자의 역할을 인공지능을 대신하고 있으며, 투자관리자보다 높은 수익률로 인해 점차 인공지능으로 거래를 하는 알고리즘 거래가 보편화하고 있다. 알고리즘 매매는 인간의 감정을 배제하고 조건에 따라 기계적으로 매매를 진행하기 때문에 장기적으로 접근했을 때 인간의 매매 수익률보다 높게 나온다. 인공지능의 딥러닝 기법은 과거의 시계열 데이터를 학습하고 미래를 예측하여 인간처럼 학습하게 되고, 변화하는 전략에 대응할 수 있어 활용도가 증가하고 있다. 특히 LSTM기법은 과거의 데이터 일부를 기억하거나 잊어버리는 형태로 최근의 데이터의 비중으로 높여 미래 예측에 사용하고 있다. 최근 facebook에서 개발한 인공지능 알고리즘인 fbprophet은 높은 예측 정확도를 자랑하며 주가나 암호화폐 시세 예측에 사용되고 있다. 따라서 본 연구는 fbprophet을 활용하여 실제 값과 차이를 분석하고 정확한 예측을 위한 조건들을 제시하여 암호화폐 자동매매를 하기 위한 새로운 알고리즘을 제공하여 건전한 투자 문화를 정착시키는 데 이바지하고자 한다.

Research on data augmentation algorithm for time series based on deep learning

  • Shiyu Liu;Hongyan Qiao;Lianhong Yuan;Yuan Yuan;Jun Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1530-1544
    • /
    • 2023
  • Data monitoring is an important foundation of modern science. In most cases, the monitoring data is time-series data, which has high application value. The deep learning algorithm has a strong nonlinear fitting capability, which enables the recognition of time series by capturing anomalous information in time series. At present, the research of time series recognition based on deep learning is especially important for data monitoring. Deep learning algorithms require a large amount of data for training. However, abnormal sample is a small sample in time series, which means the number of abnormal time series can seriously affect the accuracy of recognition algorithm because of class imbalance. In order to increase the number of abnormal sample, a data augmentation method called GANBATS (GAN-based Bi-LSTM and Attention for Time Series) is proposed. In GANBATS, Bi-LSTM is introduced to extract the timing features and then transfer features to the generator network of GANBATS.GANBATS also modifies the discriminator network by adding an attention mechanism to achieve global attention for time series. At the end of discriminator, GANBATS is adding averagepooling layer, which merges temporal features to boost the operational efficiency. In this paper, four time series datasets and five data augmentation algorithms are used for comparison experiments. The generated data are measured by PRD(Percent Root Mean Square Difference) and DTW(Dynamic Time Warping). The experimental results show that GANBATS reduces up to 26.22 in PRD metric and 9.45 in DTW metric. In addition, this paper uses different algorithms to reconstruct the datasets and compare them by classification accuracy. The classification accuracy is improved by 6.44%-12.96% on four time series datasets.

개인화 알고리즘으로 필터 버블이 형성되는 과정에 대한 검증 (A Verification about the Formation Process of Filter Bubble with Personalization Algorithm)

  • 전준영;황소윤;윤영미
    • 한국멀티미디어학회논문지
    • /
    • 제21권3호
    • /
    • pp.369-381
    • /
    • 2018
  • Nowadays a personalization algorithm is gaining huge attention. It gives users selective information which is helpful and interesting in a deluge of information based on their past behavior on the internet. However there is also a fatal side effect that the user can only get restricted information on restricted topics selected by the algorithm. Basically, the personalization algorithm makes users have a narrower perspective and even stronger bias because users have less chances to get views of opponent. Eli Pariser called this problem the 'filter bubble' in his book. It is important to understand exactly what a filter bubble is to solve the problem. Therefore, this paper shows how much Google's personalized search algorithm influences search result through an experiment with deep neural networks acting like users. At the beginning of the experiment, two Google accounts are newly created, not to be influenced by the Google's personalized search algorithm. Then the two pure accounts get politically biased by two methods. We periodically calculate the numerical score depending on the character of links and it shows how biased the account is. In conclusion, this paper shows the formation process of filter bubble by a personalization algorithm through the experiment.

개인 성향 추출을 위한 딥러닝 기반 SNS 리뷰 분석 방법에 관한 연구 (A Study on SNS Reviews Analysis based on Deep Learning for User Tendency)

  • 박우진;이주오;이형걸;김아연;허승연;안용학
    • 한국융합학회논문지
    • /
    • 제11권11호
    • /
    • pp.9-17
    • /
    • 2020
  • 본 논문에서는 개인의 성향을 추출하기 위한 딥러닝 기반의 SNS 리뷰 분석 방법을 제안한다. 기존의 SNS 리뷰 분석 방법은 대부분이 가장 높은 가중치를 기반으로 처리되기 때문에 여러 관심사에 대한 다양한 의견을 반영하지 못하는 문제점이 있다. 이를 해결하기 위해 제안된 방법은 음식을 대상으로 한 SNS의 리뷰에서 사용자의 개인적인 성향을 추출하기 위한 방법이다. YOLOv3 모델을 사용하여 분류체계를 작성하고, BiLSTM 모델을 통해 감성분석을 수행한 후 집합 알고리즘을 통해 다양한 개인적 성향을 추출한다. 실험 결과, YOLOv3 모델의 경우 Top-1 88.61%, Top-5 90.13%의 성능을 보여주었으며, BiLSTM 모델의 경우 90.99%의 정확도를 보여주었다. 또한, SNS 리뷰 분류에서의 개인 성향에 대한 다양성을 히트맵을 통해 시각화하여 확인하였다. 향후에는 다양한 분야에서의 개인 성향을 추출하여 사용자 맞춤 서비스나 마케팅 등에 활용될 것으로 기대된다.