• Title/Summary/Keyword: LSTM CNN

Search Result 222, Processing Time 0.037 seconds

Machine Learning Algorithm Accuracy for Code-Switching Analytics in Detecting Mood

  • Latib, Latifah Abd;Subramaniam, Hema;Ramli, Siti Khadijah;Ali, Affezah;Yulia, Astri;Shahdan, Tengku Shahrom Tengku;Zulkefly, Nor Sheereen
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.334-342
    • /
    • 2022
  • Nowadays, as we can notice on social media, most users choose to use more than one language in their online postings. Thus, social media analytics needs reviewing as code-switching analytics instead of traditional analytics. This paper aims to present evidence comparable to the accuracy of code-switching analytics techniques in analysing the mood state of social media users. We conducted a systematic literature review (SLR) to study the social media analytics that examined the effectiveness of code-switching analytics techniques. One primary question and three sub-questions have been raised for this purpose. The study investigates the computational models used to detect and measures emotional well-being. The study primarily focuses on online postings text, including the extended text analysis, analysing and predicting using past experiences, and classifying the mood upon analysis. We used thirty-two (32) papers for our evidence synthesis and identified four main task classifications that can be used potentially in code-switching analytics. The tasks include determining analytics algorithms, classification techniques, mood classes, and analytics flow. Results showed that CNN-BiLSTM was the machine learning algorithm that affected code-switching analytics accuracy the most with 83.21%. In addition, the analytics accuracy when using the code-mixing emotion corpus could enhance by about 20% compared to when performing with one language. Our meta-analyses showed that code-mixing emotion corpus was effective in improving the mood analytics accuracy level. This SLR result has pointed to two apparent gaps in the research field: i) lack of studies that focus on Malay-English code-mixing analytics and ii) lack of studies investigating various mood classes via the code-mixing approach.

Gait Type Classification Using Multi-modal Ensemble Deep Learning Network

  • Park, Hee-Chan;Choi, Young-Chan;Choi, Sang-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.29-38
    • /
    • 2022
  • 본 논문에서는 멀티 센서가 장착된 스마트 인솔로 측정한 보행 데이터에 대해 앙상블 딥러닝 네트워크를 이용하여 보행의 타입을 분류하는 시스템을 제안한다. 보행 타입 분류 시스템은 인솔에 의해 측정된 데이터를 정규화하는 부분과 딥러닝 네트워크를 이용하여 보행의 특징을 추출하는 부분, 그리고 추출된 특징을 입력으로 보행의 타입을 분류하는 부분으로 구성되어 있다. 서로 다른 특성을 가지는 CNN과 LSTM을 기반으로 하는 네트워크를 독립적으로 학습하여 두 종류의 보행 특징 맵을 추출하였으며, 각각의 분류 결과를 결합하여 최종적인 앙상블 네트워크의 분류 결과를 도출하였다. 20~30대 성인의 걷기, 뛰기, 빠르게 걷기, 계단 오르기와 내려가기, 언덕 오르기와 내려가기의 7종류의 보행에 대해, 스마트 인솔을 이용하여 실측한 멀티 센서 데이터를 제안한 앙상블 네트워크로 분류해 본 결과 90% 이상의 높은 분류율을 보이는 것을 확인하였다.

고속 푸리에 변환 및 심층 신경망을 사용한 전력 품질 외란 감지 및 분류 (Power Quality Disturbances Detection and Classification using Fast Fourier Transform and Deep Neural Network)

  • 첸센폰;임창균
    • 한국전자통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.115-126
    • /
    • 2023
  • 무작위 및 주기적인 변동하는 재생에너지 발전 전력 품질 교란으로 인해 발전 변환 송전 및 배전에서 더 자주 발생하게 된다. 전력 품질 교란은 장비 손상 또는 정전으로 이어질 수 있다. 따라서 서로 다른 전력 품질 외란을 실시간으로 자동감지하고 분류하는 것이 필요하다. 전통적인 PQD 식별 방법은 특징 추출 특징 선택 및 분류의 세 단계로 구성된다. 그러나 수동으로 생성한 특징은 선택 단계에서 정확성을 보장하기 힘들어서 분류 정확도를 향상하는 데에는 한계가 있다. 본 논문에서는 16가지 종류의 전력 품질 신호를 인식하기 위해 CNN(Convolution Neural Networ)과 LSTM(Long Short Term Memory)을 기반으로 시간 영역과 주파수 영역의 특징을 결합한 심층 신경망 구조를 제안하였다. 주파수 영역 데이터는 주파수 영역 특징을 효율적으로 추출할 수 있는 FFT(Fast Fourier Transform)로 얻었다. 합성 데이터와 실제 6kV 전력 시스템 데이터의 성능은 본 연구에서 제안한 방법이 다른 딥러닝 방법보다 일반화되었음을 보여주었다.

기계학습 기반 알츠하이머성 치매의 다중 분류에서 EEG-fNIRS 혼성화 기법 (An EEG-fNIRS Hybridization Technique in the Multi-class Classification of Alzheimer's Disease Facilitated by Machine Learning)

  • 호티키우칸;김인기;전영훈;송종인;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.305-307
    • /
    • 2021
  • Alzheimer's Disease (AD) is a cognitive disorder characterized by memory impairment that can be assessed at early stages based on administering clinical tests. However, the AD pathophysiological mechanism is still poorly understood due to the difficulty of distinguishing different levels of AD severity, even using a variety of brain modalities. Therefore, in this study, we present a hybrid EEG-fNIRS modalities to compensate for each other's weaknesses with the help of Machine Learning (ML) techniques for classifying four subject groups, including healthy controls (HC) and three distinguishable groups of AD levels. A concurrent EEF-fNIRS setup was used to record the data from 41 subjects during Oddball and 1-back tasks. We employed both a traditional neural network (NN) and a CNN-LSTM hybrid model for fNIRS and EEG, respectively. The final prediction was then obtained by using majority voting of those models. Classification results indicated that the hybrid EEG-fNIRS feature set achieved a higher accuracy (71.4%) by combining their complementary properties, compared to using EEG (67.9%) or fNIRS alone (68.9%). These findings demonstrate the potential of an EEG-fNIRS hybridization technique coupled with ML-based approaches for further AD studies.

  • PDF

정형 및 비정형 데이터를 이용한 농산물 구매량 예측: 파프리카를 중심으로 (Prediction of Agricultural Purchases Using Structured and Unstructured Data: Focusing on Paprika)

  • ;이경희;라형철;최은선;조완섭
    • 한국빅데이터학회지
    • /
    • 제6권2호
    • /
    • pp.169-179
    • /
    • 2021
  • 소비자의 식품소비행동은 소비자 패널 데이터와 같은 정형 데이터 뿐 아니라 매스미디어와 소셜미디어(SNS) 등 비정형 데이터로부터 영향을 받을 가능성이 높아지고 있다. 본 연구에서는 식품소비 관련된 정형 데이터와 비정형 데이터를 연계한 융합데이터 셋에 대하여 딥러닝 기반의 소비예측 모델을 생성하고 이를 검증한다. 연구의 결과는 정형 데이터와 비정형 데이터를 결합할 때 모델 정확도가 향상되었음을 보여주었다. 또한 비정형 데이터가 모델 예측 가능성을 향상시키는 것으로 나타났다. 변수들의 중요도를 식별하기 위해 SHAP 기법을 사용한 결과 블로그 및 비디오 데이터 관련 변수가 상위 목록에 있었고, 파프리카 구매 금액과 양의 상관관계가 있음을 알 수 있었다. 또한 실험 결과에 따르면 머신러닝 모델이 딥러닝 모델보다 높은 정확도를 보였고, 기존의 시계열 분석 모델링에 대한 효율적인 대안이 될 수 있음을 확인하였다.

Vision-Based Activity Recognition Monitoring Based on Human-Object Interaction at Construction Sites

  • Chae, Yeon;Lee, Hoonyong;Ahn, Changbum R.;Jung, Minhyuk;Park, Moonseo
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.877-885
    • /
    • 2022
  • Vision-based activity recognition has been widely attempted at construction sites to estimate productivity and enhance workers' health and safety. Previous studies have focused on extracting an individual worker's postural information from sequential image frames for activity recognition. However, various trades of workers perform different tasks with similar postural patterns, which degrades the performance of activity recognition based on postural information. To this end, this research exploited a concept of human-object interaction, the interaction between a worker and their surrounding objects, considering the fact that trade workers interact with a specific object (e.g., working tools or construction materials) relevant to their trades. This research developed an approach to understand the context from sequential image frames based on four features: posture, object, spatial features, and temporal feature. Both posture and object features were used to analyze the interaction between the worker and the target object, and the other two features were used to detect movements from the entire region of image frames in both temporal and spatial domains. The developed approach used convolutional neural networks (CNN) for feature extractors and activity classifiers and long short-term memory (LSTM) was also used as an activity classifier. The developed approach provided an average accuracy of 85.96% for classifying 12 target construction tasks performed by two trades of workers, which was higher than two benchmark models. This experimental result indicated that integrating a concept of the human-object interaction offers great benefits in activity recognition when various trade workers coexist in a scene.

  • PDF

기상 데이터와 기상 위성 영상을 이용한 다중 딥러닝 모델 기반 일사량 예측 (Radiation Prediction Based on Multi Deep Learning Model Using Weather Data and Weather Satellites Image)

  • 김재정;유용훈;김창복
    • 한국항행학회논문지
    • /
    • 제25권6호
    • /
    • pp.569-575
    • /
    • 2021
  • 딥러닝은 데이터의 품질과 모델에 따라 예측 성능에 차이를 보인다. 본 연구는 발전량 예측에 가장 영향을 주는 일사량 예측을 위한 최적의 딥러닝 모델을 구축하기 위해 다양한 입력 데이터와 다중 딥러닝 모델을 사용하였다. 입력 데이터는 기상청의 기상 데이터와 천리안 기상영상을 기상청 지역의 영상을 분할하여 사용하였다, 본 연구는 기본적인 딥러닝 모델인 DNN, LSTM, CNN 모델에 대해 중간층의 깊이와 노드를 변경하여 일사량을 예측하여, 비교 평가하였다, 또한, 각 모델에서 가장 좋은 오차율을 가진 모델을 연결한 다증 딥러닝 모델을 구축하여 일사량을 예측하였다. 실험 결과로서 다중 딥러닝 모델인 모델 A의 RMSE는 0.0637이며, 모델 B의 RMSE는 0.07062이며, 모델 C의 RMSE는 0.06052로서 단일 모델보다 모델 A 그리고 모델 C의 오차율이 좋았다. 본 연구는 실험을 통해 두 개 이상의 모델을 연결한 모델이 향상된 예측률과 안정된 학습 결과를 보였다.

데이터센터 냉각 시스템의 에너지 절약을 위한 인공신경망 기반 열환경 예측 모델 (Artificial Neural Network-based Thermal Environment Prediction Model for Energy Saving of Data Center Cooling Systems)

  • 임채영;여채은;안성율;이상현
    • 문화기술의 융합
    • /
    • 제9권6호
    • /
    • pp.883-888
    • /
    • 2023
  • 데이터센터는 24시간 365일 IT 서비스를 제공하는 곳이기 때문에, 2030년에는 데이터센터의 전력 소비량은 약 10%로 증가될 것으로 예측되고, 고밀도 IT장비들의 도입이 점차 증가하면서, IT장비가 안정적으로 운영될 수 있도록 냉방 에너지 절감 및 이를 위한 에너지 관리가 갖춰져야 하기에 다양한 연구가 요구되고 있는 상황이다. 본 연구는 데이터센터의 에너지 절약을 위해 다음과 같은 과정을 제안한다. 데이터센터를 CFD 모델링하고, 인공지능기반 열환경 예측 모델을 제안하였으며, 실측 데이터와 예측 모델 그리고 CFD 결과를 비교하여 최종적으로 데이터 센터의 열관리 성능을 평한 결과 전처리 방식은 정규화 방식으로 사용되었고, 정규화에 따른 RCI, RTI 및 PUE의 예측값 또한 유사한 것을 확인할 수 있다. 따라서 본 연구에서 제안하는 알고리즘으로 데이터센터에 적용될 열환경 예측 모델로 적용 및 제공할 수 있을 것으로 판단된다.

Speech Emotion Recognition in People at High Risk of Dementia

  • Dongseon Kim;Bongwon Yi;Yugwon Won
    • 대한치매학회지
    • /
    • 제23권3호
    • /
    • pp.146-160
    • /
    • 2024
  • Background and Purpose: The emotions of people at various stages of dementia need to be effectively utilized for prevention, early intervention, and care planning. With technology available for understanding and addressing the emotional needs of people, this study aims to develop speech emotion recognition (SER) technology to classify emotions for people at high risk of dementia. Methods: Speech samples from people at high risk of dementia were categorized into distinct emotions via human auditory assessment, the outcomes of which were annotated for guided deep-learning method. The architecture incorporated convolutional neural network, long short-term memory, attention layers, and Wav2Vec2, a novel feature extractor to develop automated speech-emotion recognition. Results: Twenty-seven kinds of Emotions were found in the speech of the participants. These emotions were grouped into 6 detailed emotions: happiness, interest, sadness, frustration, anger, and neutrality, and further into 3 basic emotions: positive, negative, and neutral. To improve algorithmic performance, multiple learning approaches were applied using different data sources-voice and text-and varying the number of emotions. Ultimately, a 2-stage algorithm-initial text-based classification followed by voice-based analysis-achieved the highest accuracy, reaching 70%. Conclusions: The diverse emotions identified in this study were attributed to the characteristics of the participants and the method of data collection. The speech of people at high risk of dementia to companion robots also explains the relatively low performance of the SER algorithm. Accordingly, this study suggests the systematic and comprehensive construction of a dataset from people with dementia.

데이터의 불균형성을 제거한 네트워크 침입 탐지 모델 비교 분석 (Experimental Comparison of Network Intrusion Detection Models Solving Imbalanced Data Problem)

  • 이종화;방지원;김종욱;최미정
    • KNOM Review
    • /
    • 제23권2호
    • /
    • pp.18-28
    • /
    • 2020
  • 컴퓨팅 환경의 발전에 따라 IT 기술이 의료, 산업, 통신, 문화 등의 분야에서 사람들에게 제공해주는 혜택이 늘어나 삶의 질도 향상되고 있다. 그에 따라 발전된 네트워크 환경을 노리는 다양한 악의적인 공격이 존재한다. 이러한 공격들을 사전에 탐지하기 위해 방화벽, 침입 탐지 시스템 등이 존재하지만, 나날이 진화하는 악성 공격들을 탐지하는 데에는 한계가 있다. 이를 해결하기 위해 기계 학습을 이용한 침입 탐지 연구가 활발히 진행되고 있지만, 학습 데이터셋의 불균형으로 인한 오탐 및 미탐이 발생하고 있다. 본 논문에서는 네트워크 침입 탐지에 사용되는 UNSW-NB15 데이터셋의 불균형성 문제를 해결하기 위해 랜덤 오버샘플링 방법을 사용했다. 실험을 통해 모델들의 accuracy, precision, recall, F1-score, 학습 및 예측 시간, 하드웨어 자원 소모량을 비교 분석했다. 나아가 본 연구를 기반으로 랜덤 오버샘플링 방법 이외에 불균형한 데이터 문제를 해결할 수 있는 다른 방법들과 성능이 높은 모델들을 이용하여 좀 더 효율적인 네트워크 침입 탐지 모델 연구로 발전시키고자 한다.