• Title/Summary/Keyword: LSTM

Search Result 1,081, Processing Time 0.034 seconds

A Study on data management by applying LSTM time series parameters (LSTM 시계열 매개변수 적용을 통한 효율적 데이터 관리)

  • Min, Youn A
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.537-538
    • /
    • 2022
  • LSTM은 딥러닝 RNN의 한 종류이며 RNN의 단점인 장기 데이터손실에 대한 문제를 해결하기 위해 제시된다. 본 논문에서는 LSTM의 하이퍼파라미터 적용 시 이전 state의 중요도와 이후 state에 대한 중요도 예측에 대한 신경망 처리를 위하여 유의미성 측정가능한 매개변수를 적용하여 처리하고 데이터에 대한 정밀도와 재현율을 높이는 것을 목적으로 한다. 동일한 데이터셋에 대하여 전통적인 LSTM 방식과 본 연구를 비교한 결과 정밀도와 재현율이 5%이상 증가함을 확인하였다.

  • PDF

Motor Anomaly Detection Using LSTM Autoencoder (LSTM Autoencoder를 활용한 전동기 이상 탐지)

  • Jun-Seok Park;Yoo-Jin Ha;Jae-Chern Yoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.307-309
    • /
    • 2023
  • 본 논문에서는 LSTM Autoencoder를 활용한 전동기의 Anomaly Detection을 제안한다. 전동기의 Anomaly Detection를 통해 전동킥보드의 고장을 예방하여 이용자의 안전을 보장한다. 전동기로부터 얻은 시계열 진동 데이터와 시계열 데이터 분석에 유의미한 LSTM을 활용한 Autoencoder를 통해 Anomaly Detection을 구현했다. 그 결과 99.9%의 정확도를 기록하였다.

  • PDF

Korean Semantic Role Labeling using Backward LSTM CRF (Backward LSTM CRF를 이용한 한국어 의미역 결정)

  • Bae, Jangseong;Lee, Changki;Lim, Soojong
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.194-197
    • /
    • 2015
  • Long Short-term Memory Network(LSTM) 기반 Recurrent Neural Network(RNN)는 순차 데이터를 모델링 할 수 있는 딥 러닝 모델이다. 기존 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN은 멀리 떨어져 있는 이전의 입력 정보를 볼 수 있다는 장점이 있어 음성 인식 및 필기체 인식 등의 분야에서 좋은 성능을 보이고 있다. 또한 LSTM RNN 모델에 의존성(전이 확률)을 추가한 LSTM CRF모델이 자연어처리의 한 분야인 개체명 인식에서 우수한 성능을 보이고 있다. 본 논문에서는 한국어 문장의 지배소가 문장 후위에 나타나는 점에 착안하여 Backward 방식의 LSTM CRF 모델을 제안하고 이를 한국어 의미역 결정에 적용하여 기존 연구보다 더 높은 성능을 얻을 수 있음을 보인다.

  • PDF

Predictions of dam inflow on Han-river basin using LSTM (LSTM을 이용한 한강유역 댐유입량 예측)

  • Kim, Jongho;Tran, Trung Duc
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.319-319
    • /
    • 2020
  • 최근 데이터 과학의 획기적인 발전 덕분에 딥러닝 (Deep Learning) 알고리즘이 개발되어 다양한 분야에 널리 적용되고 있다. 본 연구에서는 인공신경망 중 하나인 LSTM(Long-Short Term Memory) 네트워크를 사용하여 댐 유입량을 예측하였다. 구체적인 내용으로, (1) LSTM에 필요한 입력 데이터를 효율적으로 사전 처리하는 방법, (2) LSTM의 하이퍼 매개변수를 결정하는 방법 및 (3) 다양한 손실 함수(Loss function)를 선택하고 그 영향을 평가하는 방법 등을 다루었다. 제안된 LSTM 모델은 강우량(R), 댐유입량(Q) 기온(T), 기저유량(BF) 등을 포함한 다양한 입력 변수들의 함수로 가정하였으며, CCF(Cross Correlations), ACF(Autocorrelations) 및 PACF(Partial Autocorrelations) 등의 기법을 사용하여 입력 변수를 결정하였다. 다양한 sequence length를 갖는 (즉 t, t-1, … t-n의 시간 지연을 갖는) 입력 변수를 적용하여 데이터 학습에 최적의 시퀀스 길이를 결정하였다. LSTM 네트워크 모델을 적용하여 2014년부터 2020년까지 한강 유역 9개의 댐 유입량을 추정하였다. 본 연구로부터 댐 유입량을 예측하는 것은 홍수 및 가뭄 통제를 위한 필수 요건들 중 하나이며 수자원 계획 및 관리에 도움이 될 것이다.

  • PDF

Prediction of Sea Surface Temperature and Detection of Ocean Heat Wave in the South Sea of Korea Using Time-series Deep-learning Approaches (시계열 기계학습을 이용한 한반도 남해 해수면 온도 예측 및 고수온 탐지)

  • Jung, Sihun;Kim, Young Jun;Park, Sumin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1077-1093
    • /
    • 2020
  • Sea Surface Temperature (SST) is an important environmental indicator that affects climate coupling systems around the world. In particular, coastal regions suffer from abnormal SST resulting in huge socio-economic damage. This study used Long Short Term Memory (LSTM) and Convolutional Long Short Term Memory (ConvLSTM) to predict SST up to 7 days in the south sea region in South Korea. The results showed that the ConvLSTM model outperformed the LSTM model, resulting in a root mean square error (RMSE) of 0.33℃ and a mean difference of -0.0098℃. Seasonal comparison also showed the superiority of ConvLSTM to LSTM for all seasons. However, in summer, the prediction accuracy for both models with all lead times dramatically decreased, resulting in RMSEs of 0.48℃ and 0.27℃ for LSTM and ConvLSTM, respectively. This study also examined the prediction of abnormally high SST based on three ocean heatwave categories (i.e., warning, caution, and attention) with the lead time from one to seven days for an ocean heatwave case in summer 2017. ConvLSTM was able to successfully predict ocean heatwave five days in advance.

Potential of Bidirectional Long Short-Term Memory Networks for Crop Classification with Multitemporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, Chan-Won;Ahn, Ho-Yong;Na, Sang-Il;Lee, Kyung-Do;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.515-525
    • /
    • 2020
  • This study investigates the potential of bidirectional long short-term memory (Bi-LSTM) for efficient modeling of temporal information in crop classification using multitemporal remote sensing images. Unlike unidirectional LSTM models that consider only either forward or backward states, Bi-LSTM could account for temporal dependency of time-series images in both forward and backward directions. This property of Bi-LSTM can be effectively applied to crop classification when it is difficult to obtain full time-series images covering the entire growth cycle of crops. The classification performance of the Bi-LSTM is compared with that of two unidirectional LSTM architectures (forward and backward) with respect to different input image combinations via a case study of crop classification in Anbadegi, Korea. When full time-series images were used as inputs for classification, the Bi-LSTM outperformed the other unidirectional LSTM architectures; however, the difference in classification accuracy from unidirectional LSTM was not substantial. On the contrary, when using multitemporal images that did not include useful information for the discrimination of crops, the Bi-LSTM could compensate for the information deficiency by including temporal information from both forward and backward states, thereby achieving the best classification accuracy, compared with the unidirectional LSTM. These case study results indicate the efficiency of the Bi-LSTM for crop classification, particularly when limited input images are available.

Estimation of Optimal Training Period for the Deep-Learning LSTM Model to Forecast CMIP5-based Streamflow (CMIP5 기반 하천유량 예측을 위한 딥러닝 LSTM 모형의 최적 학습기간 산정)

  • Chun, Beom-Seok;Lee, Tae-Hwa;Kim, Sang-Woo;Lim, Kyoung-Jae;Jung, Young-Hun;Do, Jong-Won;Shin, Yong-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.39-50
    • /
    • 2022
  • In this study, we suggested the optimal training period for predicting the streamflow using the LSTM (Long Short-Term Memory) model based on the deep learning and CMIP5 (The fifth phase of the Couple Model Intercomparison Project) future climate scenarios. To validate the model performance of LSTM, the Jinan-gun (Seongsan-ri) site was selected in this study. We comfirmed that the LSTM-based streamflow was highly comparable to the measurements during the calibration (2000 to 2002/2014 to 2015) and validation (2003 to 2005/2016 to 2017) periods. Additionally, we compared the LSTM-based streamflow to the SWAT-based output during the calibration (2000~2015) and validation (2016~2019) periods. The results supported that the LSTM model also performed well in simulating streamflow during the long-term period, although small uncertainties exist. Then the SWAT-based daily streamflow was forecasted using the CMIP5 climate scenario forcing data in 2011~2100. We tested and determined the optimal training period for the LSTM model by comparing the LSTM-/SWAT-based streamflow with various scenarios. Note that the SWAT-based streamflow values were assumed as the observation because of no measurements in future (2011~2100). Our results showed that the LSTM-based streamflow was similar to the SWAT-based streamflow when the training data over the 30 years were used. These findings indicated that training periods more than 30 years were required to obtain LSTM-based reliable streamflow forecasts using climate change scenarios.

A Text Content Classification Using LSTM For Objective Category Classification

  • Noh, Young-Dan;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.39-46
    • /
    • 2021
  • AI is deeply applied to various algorithms that assists us, not only daily technologies like translator and Face ID, but also contributing to innumerable fields in industry, due to its dominance. In this research, we provide convenience through AI categorization, extracting the only data that users need, with objective classification, rather than verifying all data to find from the internet, where exists an immense number of contents. In this research, we propose a model using LSTM(Long-Short Term Memory Network), which stands out from text classification, and compare its performance with models of RNN(Recurrent Neural Network) and BiLSTM(Bidirectional LSTM), which is suitable structure for natural language processing. The performance of the three models is compared using measurements of accuracy, precision, and recall. As a result, the LSTM model appears to have the best performance. Therefore, in this research, text classification using LSTM is recommended.

Analysis of streamflow prediction performance by various deep learning schemes

  • Le, Xuan-Hien;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.131-131
    • /
    • 2021
  • Deep learning models, especially those based on long short-term memory (LSTM), have presented their superiority in addressing time series data issues recently. This study aims to comprehensively evaluate the performance of deep learning models that belong to the supervised learning category in streamflow prediction. Therefore, six deep learning models-standard LSTM, standard gated recurrent unit (GRU), stacked LSTM, bidirectional LSTM (BiLSTM), feed-forward neural network (FFNN), and convolutional neural network (CNN) models-were of interest in this study. The Red River system, one of the largest river basins in Vietnam, was adopted as a case study. In addition, deep learning models were designed to forecast flowrate for one- and two-day ahead at Son Tay hydrological station on the Red River using a series of observed flowrate data at seven hydrological stations on three major river branches of the Red River system-Thao River, Da River, and Lo River-as the input data for training, validation, and testing. The comparison results have indicated that the four LSTM-based models exhibit significantly better performance and maintain stability than the FFNN and CNN models. Moreover, LSTM-based models may reach impressive predictions even in the presence of upstream reservoirs and dams. In the case of the stacked LSTM and BiLSTM models, the complexity of these models is not accompanied by performance improvement because their respective performance is not higher than the two standard models (LSTM and GRU). As a result, we realized that in the context of hydrological forecasting problems, simple architectural models such as LSTM and GRU (with one hidden layer) are sufficient to produce highly reliable forecasts while minimizing computation time because of the sequential data nature.

  • PDF

Cross-Domain Text Sentiment Classification Method Based on the CNN-BiLSTM-TE Model

  • Zeng, Yuyang;Zhang, Ruirui;Yang, Liang;Song, Sujuan
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.818-833
    • /
    • 2021
  • To address the problems of low precision rate, insufficient feature extraction, and poor contextual ability in existing text sentiment analysis methods, a mixed model account of a CNN-BiLSTM-TE (convolutional neural network, bidirectional long short-term memory, and topic extraction) model was proposed. First, Chinese text data was converted into vectors through the method of transfer learning by Word2Vec. Second, local features were extracted by the CNN model. Then, contextual information was extracted by the BiLSTM neural network and the emotional tendency was obtained using softmax. Finally, topics were extracted by the term frequency-inverse document frequency and K-means. Compared with the CNN, BiLSTM, and gate recurrent unit (GRU) models, the CNN-BiLSTM-TE model's F1-score was higher than other models by 0.0147, 0.006, and 0.0052, respectively. Then compared with CNN-LSTM, LSTM-CNN, and BiLSTM-CNN models, the F1-score was higher by 0.0071, 0.0038, and 0.0049, respectively. Experimental results showed that the CNN-BiLSTM-TE model can effectively improve various indicators in application. Lastly, performed scalability verification through a takeaway dataset, which has great value in practical applications.