• Title/Summary/Keyword: LSM-Linear Scheduling Model

Search Result 3, Processing Time 0.018 seconds

NEW TREND OF SCHEDULING IN LINEAR CONSTRUCTION PROJECT

  • S. Sankar;J. Senthil
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.917-923
    • /
    • 2005
  • Scheduling is one of the main functions in construction project to determine the sequence of activities necessary to complete a project. The scheduling techniques provide important information crucial to a project's success. Highway construction project the paving activity can be considered a linear activity. Linear scheduling technique may be better suited for linear projects than other scheduling techniques. A new type of scheduling in linear project is calling Linear Scheduling Model (LSM). The Project monitoring and controlling is very ease to identify that all the stage of linear project and have more advantages.

  • PDF

Advanced Alignment-Based Scheduling with Varying Production Rates for Horizontal Construction Projects

  • Greg Duffy;Asregedew Woldesenbet;David Hyung Seok Jeong;Garold D. Oberlender
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.403-411
    • /
    • 2013
  • Horizontal construction projects such as oil and gas pipeline projects typically involve repetitive-work activities with the same crew and equipment from one end of the project to the other. Repetitive scheduling also known as linear scheduling is known to have superior schedule management capabilities specifically for such horizontal construction projects. This study discusses on expanding the capabilities of repetitive scheduling to account for the variance in production rates and visual representation by developing an automated alignment based linear scheduling program for applying temporal and spatial changes in production rates. The study outlines a framework to apply changes in productions rates when and where they will occur along the horizontal alignment of the project and illustrates the complexity of construction through the time-location chart through a new linear scheduling model, Linear Scheduling Model with Varying Production Rates (LSMVPR). The program uses empirically derived production rate equations with appropriate variables as an input at the appropriate time and location based on actual 750 mile natural gas liquids pipeline project starting in Wyoming and terminating in the center of Kansas. The study showed that the changes in production rates due to time and location resulted in a close approximation of the actual progress of work as compared to the planned progress and can be modeled for use in predicting future linear construction projects. LSMVPR allows the scheduler to develop schedule durations based on minimal project information. The model also allows the scheduler to analyze the impact of various routes or start dates for construction and the corresponding impact on the schedule. In addition, the graphical format lets the construction team to visualize the obstacles in the project when and where they occur due to a new feature called the Activity Performance Index (API). This index is used to shade the linear scheduling chart by time and location with the variation in color indicating the variance in predicted production rate from the desired production rate.

  • PDF

Analysis of Boundary Conditions for Activities' Relationships in Linear Scheduling Model (선형 공정계획 모델의 액티비티 관계의 경계조건 분석)

  • Ryu, Han-Guk;Kim, Tae-Hui
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • Domestic leading construction companies has been establishing and performing TACT scheduling method, similar to linear scheduling model such as line of balance and repetitive schedule, and etc. in which repetitive construction works are involved like high-rise building. Linear scheduling model has been researched as a visual scheduling method presenting the work space and time information. Likewise scheduling constraints of CPM network such as finish-to-finish, start-to-start, finish-to-start, start-to-start, linear scheduling model also has the relationships constraints, namely boundary conditions, between activities. It is especially necessary to define the boundary conditions of the activities' relationships in order to apply the linear scheduling model to be compatible with the network schedule. Therefore, this research considers the boundary conditions between activities for establishing the linear scheduling model. This paper also applies the proposed boundary conditions to TACT schedule and then deduces the main considerations in order to establish and perform TACT schedule.