• Title/Summary/Keyword: LQ(Linear Quadratic)

Search Result 73, Processing Time 0.027 seconds

A New Anti-windup Method Using the Linear Quadratic Observer (LQ관측기를 사용한 새로운 누적방지 기법)

  • Kim, Tae-Shin;Yang, Ji-Hyuk;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.134-139
    • /
    • 2010
  • In order to overcome some problems of existing anti-windup methods, this paper defines LQ (Linear Quadratic) observer and proposes a new anti-windup method using the LQ observer. LQ observer is derived by linear quadratic optimization in order to calculate controller states, which make the controller outputs equal to the plant inputs. And we propose an algorithm so that it can be implemented by a digital controller easily. The relationship between the design parameters and the anti-windup performance is shown via some numerical examples, which cover the cases with the anti-windup method using LQ observer designed and the case without it. Finally, the anti-windup performance of the proposed method is exemplified via comparison with the existing model-based conditioning scheme method[4].

Comparison of Linear-Quadratic Model, Incomplete-Repair Model and Marchese Model in Fractionated Carbon Beam Irradiation (탄소 빔 분할조사 시 Linear-Quadratic모델, Incomplete-Repair모델, Marchese 모델 결과 비교)

  • Choi, Eunae
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.417-420
    • /
    • 2015
  • We obtained Surviving Fraction (SF) after irradiation carbon beam to compare the applicability of the Linear-Quadratic model, Incomplete Repair model, Marchese model. Mathematica software(ver 9.0) used to calcurate parameters and compared result. LQ model could not explain the entire response of fractionated carbon beam irradiation. It becomes necessary to construct models that extend the LQ model of conventional radiotherapy for the carbon beam therapy. By combining both Potentially Lethal Damage Repair (PLDR) and Sublethal Damage Repair (SLDR) a new LQ model can develop that aptly modeled the cellular response to fractionated irradiation.

On a pole assignment of linear discrete time system

  • Shin, Jae-Woong;Shimemura, Etsujiro;Kawasaki, Naoya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.884-889
    • /
    • 1989
  • In this paper, a new procedure for selecting weighting matrices in linear discrete time quadratic optimal control problem (LQ-problem) is proposed. In LQ-problems, the quadratic weighting matrices are usually decided on trial and error in order to get a good response. But using the proposed method, the quadratic weights are decided in such a way that all poles of the closed loop system are located in a desired region for good responses as well as for stability and values of the quadratic cost function are kept less then a specified value.

  • PDF

Bumpless Transfer Implementation Algorithm for LQ Flight Control (LQ비행제어를 위한 무충돌 전환 구현 알고리즘)

  • Kim, Tae-Sin;Park, Jong-Hu;Gwon, O-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.35-41
    • /
    • 2006
  • This paper proposes an algorithm for switching LQ(Linear Quadratic) controllers designed at each flight envelope without a bump phenomenon. This algorithm is derived to apply to LQ controller more easily than existing implementation algorithm and is proposed to consider trim points of nonlinear models, which is adequate to real applications. This paper exemplifies the control performance improvement via simulations applied to LQ control of a supersonic test aircraft as a benchmark problem to test the proposed algorithm performance.

A method for deciding weighting matrices in a linear discrete time optimal regulator problems to locate all poles in the specified region

  • Shin, Jae-Woong;Shimemura, Etsujiro;Kawasaki, Naoya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.729-733
    • /
    • 1988
  • In this paper, a new procedure for selecting weighting matrices in linear discrete time quadratic optimal control problems (LQ-problem) is proposed. In LQ problems, the quadratic weighting matrices are usually decided on trial and error in order to get a good response. But using the proposed method, the quadratic weights are decided in such a way that all poles of the closed loop system are located in a desired area for good responses as well as for stability and values of the quadratic cost functional are kept less then a specified value. The closed loop systems constructed by this method have merits of LQ problems as well as those of pole assignment problems. Taking into consideration that little is known about the relationship among the quadratic weights, the poles and the values of cost functional, this procedure is also interesting from the theoretical point of view.

  • PDF

Rank-constrained LMI Approach to Simultaneous Linear Quadratic Optimal Control Design (계수조건부 LMI를 이용한 동시안정화 LQ 최적제어기 설계)

  • Kim, Seog-Joo;Cheon, Jong-Min;Kim, Jong-Moon;Kim, Chun-Kyung;Lee, Jong-Moo;Kwon, Soom-Nam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1048-1052
    • /
    • 2007
  • This paper presents a rank-constrained linear matrix inequality(LMI) approach to simultaneous linear-quadratic(LQ) optimal control by static output feedback. Simultaneous LQ optimal control is formulated as an LMI optimization problem with a nonconvex rank condition. An iterative penalty method recently developed is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method, and the results are compared with those of previous work.

A Study on the Effectiveness of ILQ Algorithm in Active Structural Control (건축 구조물의 능동 제진에 있어 ILQ 제어 알고리즘의 유용성에 관한 연구)

  • Lee, Jin-Ho;Hwang, I-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.140-145
    • /
    • 2001
  • Various control algorithms are available to suppress the vibration of a system subjected to disturbances. LQ algorithm is simple and easy to implement the hardwares, but it lacks robustness for uncertainties and often causes difficulty in determining the weighting matrices. This study focuses on the effectiveness ILQ(Inverse Linear Quadratic optimal control) algorithm as the alternative to LQ applied to control the vibration of a building under the seismic excitation. The building is of moment resisting steel frames and assumed to behave within the elastic range. The brief overview of LQ and ILQ algorithms is introduced, and the displacement responses of the structure using ILQ algorithm are compared with those obtained from LQ control. The magnitude of control forces are also determined and compared for both LQ and ILQ algorithm.

  • PDF

Linear-Quadratic Detectors for Spectrum Sensing

  • Biglieri, Ezio;Lops, Marco
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.485-492
    • /
    • 2014
  • Spectrum sensing for cognitive-radio applications may use a matched-filter detector (in the presence of full knowledge of the signal that may be transmitted by the primary user) or an energy detector (when that knowledge is missing). An intermediate situation occurs when the primary signal is imperfectly known, in which case we advocate the use of a linear-quadratic detector. We show how this detector can be designed by maximizing its deflection, and, using moment-bound theory, we examine its robustness to the variations of the actual probability distribution of the inaccurately known primary signal.

POLE-PLACEMENT WITHIN SPECIFIES REGIONS USING LO-DESIGN

  • Loh, N.K.;Ma, X.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.907-912
    • /
    • 1989
  • A new procedure is presented for optimally placing closed-loop poles of multivariable continuous-time systems in specified regions via linear-quadratic(LQ) state-feedback design. This method has the advantages of pole-placement and LQ-design. In addition, it provides minimum feedback gains in the control law.

  • PDF

Optimal Learning Control Combined with Quality Inferential Control for Batch and Semi-batch Processes

  • Chin, In-Sik;Lee, Kwang-Soon;Park, Jinhoon;Lee, Jay H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.57-60
    • /
    • 1999
  • An optimal control technique designed for simultaneous tracking and quality control for batch processes. The proposed technique is designed by transforming quadratic-criterion based iterative learning control(Q-ILC) into linear quadratic control problem. For real-time quality inferential control, the quality is modeled by linear combination of control input around target qualify and then the relationship between quality and control input can be transformed into time-varying linear state space model. With this state space model, the real-time quality inferential control can be incorporated to LQ control Problem. As a consequence, both the quality variable as well as other controlled variables can progressively reduce their control error as the batch number increases while rejecting real-time disturbances, and finally reach the best achievable states dictated by a quadratic criterion even in case that there is significant model error Also the computational burden is much reduced since the most computation is calculated in off-line. The Proposed control technique is applied to a semi-batch reactor model where series-parallelreactions take place.

  • PDF