• Title/Summary/Keyword: LPG pressure regulator

Search Result 13, Processing Time 0.029 seconds

Development of a Shut-off Device of LP Gas Regulator for Home Use (가정용 LP가스 조정기 차단안전장치의 개발)

  • Kim Young-Gyu;Kim Pil-Jong;Kwon Boo-Kil;Park Gyo-Shik;Kim Ji-Youn
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.54-59
    • /
    • 2006
  • A safety device with shut-off function was developed for preventing intentional accidents that might happen by separating of cutting hoses connected to pressure regulators used in residential LP gas facility. For the verification of function and field adaptability, the safety device with shut-off function was tested in the state of joining the device to the regulator and a field test was carried out at home. This study shows that, at the inlet pressure of 0.07-1.56 MPa, the device shuts off the gas within the 5m length of hose regardless of the installation condition of the regulator. The shut-off flow rate increases in the order of perpendicular upward, horizontal and perpendicular downward. From the results of the field tests carried out at home for 5 months, there appears no problem using a gas range or a boiler. If the developed shut-off device is commercialized and distributed in the market the intentional accidents occurred by cutting or separating hoses can be prevented remarkably.

  • PDF

Gas Fire Accident Cause Survey Study (가스화재사고 원인조사 연구(LP가스를 중심으로))

  • Kim, Young-Cheol;Cha, Jong-Ho
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The purpose of this paper is to report gas fire accident based on classification of the major gas fire causes (including handling mistakes, inferior goods, etc.), fire classifications (fire, explosion, leakages, etc.), damage levels(1st, 2nd, 3rd, 4th grade levels), casualties (death, serious wound, slight injury) since gas fire has been generated according to growth of gaseous fuel consumption on home and enterprises with various accident causes. Among gaseous fuels, LPG facility can be c1assified as gas container, pressure regulator, gas hose, interim valve, combustion port. Any fire or any explosion can be caused from handling mistakes, inferior goods on each parts as stated above. Exact gas fire causes shall be identified based on previous case studies on similar fires with consideration of lesson learns.

  • PDF

Experimental Study on Firing Test of LPI Engine Using Gasoline Fuel for Improving the Production Process at End of line (엔진 착화 라인의 생산성 향상을 위한 LPI 엔진 가솔린 연료 적용성에 대한 실험적 연구)

  • Hwang, In-Goo;Choi, Seong-Won;Myung, Cha-Lee;Park, Sim-Soo;Lee, Jong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.133-140
    • /
    • 2007
  • The purpose of this study was to evaluate the effects of gasoline fuel to the LPI engine. Firing test bench was used in order to assess the effect on gasoline-injected LPI engine. Gasoline fuel was supplied into the reverse direction(3-4-2-1 cylinder) at 3.0 bar with commercial gasoline fuel pump. Engine test was performed using the firing test mode at end of line. The deviations of excess air ratio of each cylinder and maximum combustion pressure using gasoline fuel were within 0.1 and $1{\sim}2\;bar$. Engine start time was measured with changing coolant temperature at $20^{\circ}C,\;40^{\circ}C,\;80^{\circ}C$, respectively. Residual gasoline volume in the fuel line was measured about 32 cc after firing test and it was less than 2 cc within 10 seconds purging. To simulate the end of line, the residual gasoline in the fuel line was purged during 5 and 10 seconds. Start time of LPI engine with LPG fuel were 0.61 and 0.58 seconds. This work showed that severe problems such as misfiring and liner scuffing were not occurred applying gasoline fuel to LPI engine.