• 제목/요약/키워드: LPG engine system

검색결과 116건 처리시간 0.024초

중형 디젤을 기초한 LPG엔진에서 배기가스온도 저감 연구 (A Study on Reduction of Exhaust Gas Temperature in Retrofitted LPG Fueled Engine Based Medium-Duty Diesel Engine)

  • 최경호;조웅래
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.63-68
    • /
    • 2003
  • The purpose of this study was to investigate reduction of exhaust gas temperature in LPG conversion engine from diesel. A conventional diesel engine was modified to a LPG(Liquified Petroleum Gas) engine that diesel fuel injection pump was replaced by the LPG fuel system. The research was peformed with measurement of exhaust gas temperature by varying spark ignition timing, air-fuel ratio, compression ratio, EGR ratio and different compositions of butane and propane. The major conclusion of this work were followed. (i) Exhaust gas temperature was decreased and power was increased with the advanced spark ignition timing. (ii) Exhaust gas temperature was decreased with lean and rich air-fuel ratio. (iii)Exhaust gas temperature was decreased and power was increased with the higher compression ratio. (iv) Engine power and exhaust temperature were not influenced by varied butane/propane fuel compositions. (v) Finally, one of the important parameters in reduction of exhaust gas temperature is spark ignition timing among the parameters in this study.

LPG / 가솔린 겸용차량의 점화시기 변환에 의한 엔진성능고찰 (A Study on Engine Performance of the Ignition Spark Timing Conversion for LPG/Gasoline Bi-fuel Vehicle)

  • 전봉준;박명호
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.39-47
    • /
    • 2011
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the optimum performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its higher ignition temperature. The purpose of this study is to investigate how the ignition spark timing conversion influences the engine performance of LPG/Gasoline Bi-Fuel engine. In order to investigate the engine performance during combustion, engine performance are sampled by data acquisition system, for example cylinder pressure, pressure rise rate and heat release rate, while change of the rpm(1500, 2000, 2500) and the ignition timing advance($5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$). As the result, between 1500rpm, 2000rpm and 2500rpm, the cylinder pressure and pressure rise rate was increased when the spark ignition was advanced but pressure rise rate at $20^{\circ}$ was smaller value.

대형 액상 LPG 분사식 SI 엔진에서 화염 가시화를 이용한 희박영역에서의 화염 전파특성 연구 (Flame Propagation Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine by Flame Visualization)

  • 김승규;배충식;이승목;김창업;강건용
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.23-32
    • /
    • 2002
  • Combustion and flame propagation characteristics of the liquid phase LPG injection (LPLI) engine were investigated in a single cylinder optical engine. Lean bum operation is needed to reduce thermal stress of exhaust manifold and engine knock in a heavy duty LPG engine. An LPLI system has advantages on lean operation. Optimized engine design parameters such as swirl, injection timing and piston geometry can improve lean bum performance with LPLI system. In this study, the effects of piston geometry along with injection timing and swirl ratio on flame propagation characteristics were investigated. A series of bottom-view flame images were taken from direct visualization using an W intensified high-speed CCD camera. Concepts of flame area speed, In addition to flame propagation patterns and thermodynamic heat release analysis, was introduced to analyze the flame propagation characteristics. The results show the correlation between the flame propagation characteristics, which is related to engine performance of lean region, and engine design parameters such as swirl ratio, piston geometry and injection timing. Stronger swirl resulted in foster flame propagation under open valve injection. The flame speed was significantly affected by injection timing under open valve injection conditions; supposedly due to the charge stratification. Piston geometry affected flame propagation through squish effects.

기체연료엔진의 제어시스템 설계를 위한 엔진 모델링 및 검증 (Engine Modeling and Validation for Control System Design of a Gaseous-fuel Engine)

  • 심한섭;선우명호
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.7-17
    • /
    • 2003
  • Highly accurate control of an air-fuel ratio is very important to reduce exhaust gas emissions of gaseous-fuel engines. In order to achieve this purpose, a precise engine model is required to estimate engine performance from the engine design process which is applied to the design of an engine controller. Engine dynamics are considered to develop a dynamic engine model of a gaseous-fuel engine. An effective air mass ratio is proposed to study variations of the engine dynamics according to the water vapor and the gaseous-fuel in the mixture. The dynamic engine model is validated with the LPG engine under steady and transient operating conditions. The experimental results in the LPG gaseous-fuel engine show that the estimation of the air flow and the air-fuel ratio based upon the effective air mass ratio is more accurate than that of a normal engine model.

부탄과 프로판 혼합비율에 따른 액상 LPG 분사시 Icing 특성 (Icing Characteristics of Liquid Phase LPG Injection According to Butane and Propane Mixing Rates)

  • 김영진;조원준;이기형
    • 한국분무공학회지
    • /
    • 제16권3호
    • /
    • pp.146-151
    • /
    • 2011
  • LPG(Liquified Petroleum Gas) fuel for vehicles has lots of advantages such as low emission level, cheaper fuel cost and enough infrastructure. Therefore it arouses interest as an alternative engine to reduce emission of diesel engines. Especially MPI(Multi Point Injection) type LPLi(Liquid Phase LPG injection) system could have overcome the disadvantages of mixer types such as low engine performance, decreased charging efficiency and cold starting difficulty. However ice formation on the nozzle tip and intake port due to the freezing of moisture around the components is often observed in LPLi systems. This icing phenomenon is the direct cause of unstable engine combustion, resulting in engine emissions. Therefore in this research, a spray visualization test for LPG injection was carried out to obtain the basic information of an LPLi injector, then the effects of butane and propane mixing rates on ice formation at the intake port and nozzle tip was investigated. As a result, the icing characteristics of them showed contrary results according to the mixing rates.

직접분사식 LPG 엔진의 연소전략 및 공기과잉률 변화에 따른 연소특성 비교 (Comparison of Combustion Characteristics with Combustion Strategy and Excess Air Ratio Change in a Lean-burn LPG Direct Injection Engine)

  • 조시현;박철웅;오승묵;윤준규
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.96-103
    • /
    • 2014
  • Liquefied Petroleum Gas(LPG) has attracted attention as a alternative fuel. The lean-burn LPG direct injection engine is a promising technology because it has an advantage of lower harmful emissions. This study aims to investigate the effect of combustion strategy and excess air ratio on combustion and emission characteristics in lean-burn LPG direct injection engine. Fuel consumption and combustion stability were measured with change of the ignition timing and injection timing at various air/fuel ratio conditions. The lean combustion characteristics were evaluated as a function of the excess air ratio with the single injection and multiple injection strategy. Furthermore, the feasibility of lean operation with stratified mixture was assessed when comparing the combustion and emission characteristics with premixed lean combustion.

터빈방식 펌프 LPi연료공급 시스템의 엔진 고온재시동 시 LPG 조성비에 따른 연료레일에서의 압력 및 온도특성에 관한 연구 (Study on the fuel rail temperature and pressure characteristics with LPG composition during hot restart condition of LPi engine with turbine type pump)

  • 이강주;김주원;명차리;박심수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3323-3328
    • /
    • 2007
  • Conventional LPG pump for Liquified Petroleum injection(LPi) engine has been adopted vane type. But the BLDC type fuel pump for LPi system has complicated structure and its price is high. Therefore, as a alternative, this study has mainly focused on the development of turbine type LPG pump which has lower cost and simple structure than conventional BLDC type. To verify the possibility of substitute the performance tests were performed for each fuel pump. The comparative items were pressure settling time, variation of fuel outlet temperature and engine performance of hot restart ability. As a result, performances of turbine type LPG pump were equivalent or high comparing to the BLDC type all over the tests for different fuel composition.

  • PDF

액상 LPG 분사 엔진의 인젝터 제어 로직 (Injector Control Logic for a Liquid Phase LPG Injection Engine)

  • 조성우;민경덕
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.15-21
    • /
    • 2003
  • The liquid phase LPG injection engine is a new technology to make good use of LPG as a clean energy. However, it is difficult to precisely control air/fuel ratio in the system because of variation of fuel composition, change of temperature and flash boiling injection mechanism. This study newly suggests an injector control logic for liquid phase LPG injection systems. This logic compensates a number of effects such as variations of density, stoichiometric air/fuel ratio, injection delay time, injection pressure, release pressure which is formed by flash boiling of fuel at nozzle exit. This logic can precisely control air/fuel ratio with only two parameters of intake air flow rate and injection pressure without considering fuel composition, fuel temperature.

EGR 유입방식에 따른 LPLi 엔진 성능 및 배기 배출물 특성에 관한 연구 (Study on Engine Performance and Characteristics of Exhaust Gas Properties according to various EGR Feeding Methods in LPLi Engine)

  • 곽호철;명차리;박심수;천동필
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.7-14
    • /
    • 2003
  • Recently, LPG has been considered as more environmental friendly fuel than liquid fuels for vehicles. However because LPLi engine has the strong point that not only increases the volumetric efficiency and cold startability, but also decreases unburned hydrocarbon exhaust emission in warm-up condition, much attention has moved to development of the Liquid Phase LPG injection (LPLi) system from the mixer type LPG engine. To reduce exhaust NOx, this study investigated the effect of EGR with LPLi engine and determined optimized EGR feeding position and distribution. In addition, engine stability, performance, and exhaust emission level were evaluated.

흡기다기관 형상변화가 3기통 LPG엔진의 토크 특성에 끼치는 영향에 관한 실험적 연구 (An Experimental Study on the Effects of Intake Manifold Shapes on the Torque Characteristics in a 3-Cylinder LPG Engine)

  • 이지근;이한풍;강신재;노병준
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.175-182
    • /
    • 1997
  • The purpose of this study is to investigate the effects of intake manifold shapes to improve the engine performance in a 3-cylinder LPG engine with a closed loop fuel supply system. To know the flow resistance of intake manifolds with shape, the intake negative pressure of each runner in intake manifolds were measured by using the digital pressure meter at each driving condition. And, the engine torque and power have been measured with an engine dynamometer while adjusting the optimal fuel consumption ratio with a solenoid driver. As 속 results form this experiment, the torque characteris- tics were more improved with the plenum chamber(B type intake manifold) than with the banana type(A type intake manifold). The torque characteristics were improved at mid-engine speed(rpm) range as the inner diameter of the intake manifold became smaller. And also the optimum volume among the examined plenum chamber volume was 0.74 times(590cc) the displacement of the test engine.

  • PDF