• 제목/요약/키워드: LPG cylinder

검색결과 94건 처리시간 0.031초

LPG / 가솔린 겸용차량의 점화시기 변환에 의한 엔진성능고찰 (A Study on Engine Performance of the Ignition Spark Timing Conversion for LPG/Gasoline Bi-fuel Vehicle)

  • 전봉준;박명호
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.39-47
    • /
    • 2011
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the optimum performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its higher ignition temperature. The purpose of this study is to investigate how the ignition spark timing conversion influences the engine performance of LPG/Gasoline Bi-Fuel engine. In order to investigate the engine performance during combustion, engine performance are sampled by data acquisition system, for example cylinder pressure, pressure rise rate and heat release rate, while change of the rpm(1500, 2000, 2500) and the ignition timing advance($5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$). As the result, between 1500rpm, 2000rpm and 2500rpm, the cylinder pressure and pressure rise rate was increased when the spark ignition was advanced but pressure rise rate at $20^{\circ}$ was smaller value.

대형 LPG 엔진의 노크 특성에 관한 연구 (The Study on Knock Characteristics of Heavy Duty LPG Engine)

  • 황승환;이정원;민경덕
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.107-113
    • /
    • 2002
  • LPG has been well known as a clean alternative fuel for vehicles. Recently, several LPG engines for heavy duty vehicles have been developed, which can replace some diesel engines that are one of the main sources for air pollution in the urban area. Because cylinder bore of heavy duty LPG engine is larger than that of gasoline, the study of knock characteristics of LPG engine are needed. In this study, the knock characteristics were investigated with various engine speed, air excess ratios and LPG fuel compositions. Experimental results indicated that the Knock occurrence probability decreases with increasing engine speed and propane fraction of fuel. The Knock occurrence probability is highest at excess air ratio of 1 and decreases as the mixture strength became leaner.

가스밸브의 강도안전성에 관한 연구 (A Study on the Strength Safety of a Gas Valve)

  • 김청균
    • 한국가스학회지
    • /
    • 제22권1호
    • /
    • pp.60-63
    • /
    • 2018
  • 본 연구에서는 LPG 용기용 가스밸브의 강도안전성에 대한 FEM 해석결과를 제시하고 있다. FEM 해석결과에 의하면, 가스밸브가 완전히 열린 상태에서 3.5 MPa의 공급압력을 적용하였을 때, 안전밸브와 나사의 상단부사이의 경계 지역에서 발생한 von Mises 최고응력은 99.2 MPa로 나타났다. 99.2 MPa라는 von Mises 최고응력은 황동소재의 항복강도에 비해 낮은 값으로 충분히 안전한 결과이다. 이 경우에, 압력조정기의 상측 오른쪽에서는 최대 변위량 0.002mm가 발생하였다. 최대로 변형된 이 지역은 가스밸브에 설치된 오링이나 다이어프램과 같은 밀봉 부분이 아니므로 의미를 부여할 필요는 없다. 기존의 개폐식 밸브와 압력 조정기를 일체형으로 형성하여 제시한 하이브리드형의 가스밸브 모델은 LPG 용기용으로 가스누출이 없는 메커니즘과 최소로 단순화시킨 크기의 가스모델로 추천된다.

대형엔진용 액상분사식 LPG 연료공급 방식에 대한 기초연구 (1) (Fundamental Study on Liquid Phase LPG Injection System for Heavy-Duty Engine (I))

  • 김창업;오승묵;강건용
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.85-91
    • /
    • 2001
  • LPG has been well known as a clean alternative fuel for vehicles. As a fundamental study on liquid phase LPG injection (hereafter LPLI) system application to heavy-duty engine, engine output and combustion performance were investigated with various operating conditions using a single cylinder engine equipped with the LPLI system. Experimental results revealed that no problems were occurred in application of the LPG fuel to heavy-duty engine, and that volumetric efficiency and engine output, by 10% approximately, were increased with the LPLI system. It was resulted from the decrease of the intake manifold temperature through liquid phase LPG fuel injection. These results provided an advantage in the decrease of the exhaust gas temperature, in the control of knocking phenomena, spark timing and compression ratio. The LPLI engine could normally operated under $\lambda$=1.5 or EGR 30% condition. The optimized swirl ratio for the heavy duty LPG engine was found around R_s$ = 2.0.

  • PDF

대형 LPG 엔진의 흡입 스월비에 따른 연소성능에 관한 연구 (The Effect of Intake Swirl Ratios on Combustion Performance in a Heavy-Duty LPG Engine)

  • 한병주;김창업;강건용;이창식
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.46-53
    • /
    • 2001
  • To optimize the intake flow condition in the heavy-duty LPG SI engine, five different swirl ratios of intake port were investigated experimentally by oil spot method, LDV and single cylinder engine test. The flow characteristics near the piston surface were observed by oil spot method and magnitudes of swirl flow were measured quantatively by LDV method in the steady flow rig. The engine performances of various swirl flow were also tested with the heavy-duty LPG SI single cylinder engine. In the results, high swirl ratio, above $R_s$=2.3, was not suitable to develope a stable flame kernel and to produce high engine performance. Especially it was more serious under lean burn conditions, since turbulence intensity was smaller than bulk flow though those are increased together. These results were also confirmed by LDV measurement and oil spot method. On the contrary, low swirl ratio($R_s$=1.3) is not good to propagate a flame since the turbulence intensity and bulk flow are vanished during compression stroke and low swirl ratio has too weak initial energy for stable combustion. Therefore, the of optimized swirl ratio f3r the heavy-duty LPG engine in this work was found around $R_s$=2.0.

  • PDF

적접분사식 LPG엔진에서 연료분사압력이 연소/배기특성에 미치는 영향 연구 (Effects of Injection Pressures on Combustion and Emissions in a Direct Injection LPG Spark Ignition Engine)

  • 이석환;조준호;오승묵
    • 한국분무공학회지
    • /
    • 제16권1호
    • /
    • pp.7-14
    • /
    • 2011
  • High pressure LPG fuel spray with a conventional swirl injector was visualized and the impact of the injection pressure was also investigated using a DISI (direct injection spark ignition) LPG single cylinder engine. Engine performance and emission characteristics were evaluated over three different injection pressure and engine loads at an engine speed of 1500 rpm. The fuel spray pattern appeared to notably have longer penetration length and narrower spray angle than those of gasoline due to its lower angular momentum and rapid vaporization. Fuel injection pressure did not affect combustion behaviors but for high injection pressure and low load condition ($P_{inj}$=120 bar and 2 bar IMEP), which was expected weak flow field configuration and low pressure inside the cylinder. In terms of nano particle formation the positions of peak values in particle size distributions were not also changed regardless of the injection pressure, and its number densities were dramatically reduced compared to those of gasoline.

대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구 (Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine)

  • 오승묵;김창업;강건용;우영민;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.1-11
    • /
    • 2004
  • Combustion and fuel distribution characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine, Swirl ratio were varied between 1.2, 2.3, and 3.4 following Ricardo swirl number(Rs) definition, Rs=2.3 showed the best results with lower cycle-by-cycle variation and shorter burning duration in the lean region while strong swirl(Rs=3.4) made these worse for combustion enhancement. Excessive swirl resulted in reverse effects due to high heat transfer and initial flame kernel quenching. Fuel injection timings were categorized with open valve injection(OVI) and closed valve injection(CVI). Open valve injection showed shorter combustion duration and extended lean limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs=2.3.

흡기다기관 형상변화가 3기통 LPG엔진의 토크 특성에 끼치는 영향에 관한 실험적 연구 (An Experimental Study on the Effects of Intake Manifold Shapes on the Torque Characteristics in a 3-Cylinder LPG Engine)

  • 이지근;이한풍;강신재;노병준
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.175-182
    • /
    • 1997
  • The purpose of this study is to investigate the effects of intake manifold shapes to improve the engine performance in a 3-cylinder LPG engine with a closed loop fuel supply system. To know the flow resistance of intake manifolds with shape, the intake negative pressure of each runner in intake manifolds were measured by using the digital pressure meter at each driving condition. And, the engine torque and power have been measured with an engine dynamometer while adjusting the optimal fuel consumption ratio with a solenoid driver. As 속 results form this experiment, the torque characteris- tics were more improved with the plenum chamber(B type intake manifold) than with the banana type(A type intake manifold). The torque characteristics were improved at mid-engine speed(rpm) range as the inner diameter of the intake manifold became smaller. And also the optimum volume among the examined plenum chamber volume was 0.74 times(590cc) the displacement of the test engine.

  • PDF

대형엔진용 액상분사식 LPG 연료공급방식에 대한 기초연구 (2) (The Fundamental Study on Liquid Phase LPG Injection System for Heavy-Duty Engine (II))

  • 김창업;오승묵;강건용
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.1-7
    • /
    • 2001
  • Recently, several LPG engines for heavy-duty vehicles have been developed, which can replace some diesel engines that are one of a main source for air pollution in urban area. As a preliminary study on the liquid phase LPG injection (hereafter LPLI) system applicable to a heavy duty LPG engine, the engine output and combustion performance were investigated with various combustion chambers and fuel compositions using a single cylinder engine equipped. Experimental results revealed that ellipse, double ellipse and nebula type combustion chamber made a more advantage in breaking swirl flow into small turbulence scale than bathtub type. Especially, performance of nebula type showed most highest efficiency and engine output under lean mixture conditions. An investigation fur various LPG fuel compositions was also carried out, and revealed that the case with 40% propane and 60% butane shows the lowest efficiency at stoichiometry, however, as the mixture became leaner its efficiency increased and became even higher for 100% propane case.

  • PDF

가솔린 및 LPG 연료를 사용하는 직접분사식 불꽃점화엔진에서 배출되는 극미세입자 배출 특성에 관한 연구 (Particulate Emissions from a Direct Injection Spark-ignition Engine Fuelled with Gasoline and LPG)

  • 이석환;오승묵;강건용;조준호;차경옥
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.65-72
    • /
    • 2011
  • In this study, the numbers, sizes of particles from a single cylinder direct injection spark-ignition (DISI) engine fuelled with gasoline and LPG are examined over a wide range of engine operating conditions. Tests are conducted with various engine loads (2~10bar of IMEP) and fuel injection pressures (60, 90, and 120 bar) at the engine speed of 1,500 rpm. Particles are sampled directly from the exhaust pipe using rotating disk thermodiluter. The size distributions are measured using a scanning mobility particle sizer (SMPS) and the particle number concentrations are measured using a condensation particle counter (CPC). The results show that maximum brake torque (MBT) timing for LPG fuel is less sensitive to engine load and its combustion stability is also better than that for gasoline fuel. The total particle number concentration for LPG was lower by a factor of 100 compared to the results of gasoline emission due to the good vaporization characteristic of LPG. Test result presents that LPG for direct injection spark ignition engine help the particle emission level to reduce.