• Title/Summary/Keyword: LPG cylinder

Search Result 94, Processing Time 0.018 seconds

Characteristics of Pressure wave Pulsation at Carburetor on Small SI Engine (소형엔진 기화기 내의 흡기 맥동 특성)

  • Oh, J.W.;Choi, Y.H.;Kim, B.G.;Lee, D.G.;Kim, D.S.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.14 no.1
    • /
    • pp.34-38
    • /
    • 2009
  • This paper presents the pulsation of carburetor inlet and outlet pressure of a small SI gasoline engine. The engine used in this paper is a 23cc, single cylinder, diaphragm carburetor, two-stroke, air-cooled for brush cutter. The rpm and pressure wave pulsation at the inlet and the outlet of carburetor were measured and analysed for the understand of the internal air flow into the barrel on the diaphragm carburetor. These data should be used for the development of the duel fuel injection system for gasoline and LPG. The results showed that the carburetor inlet pressure variations were very steady, but the pressure variations at carburetor outlet were very sensitive to the pressure variation into the crank case and were to similar independently to the engine speed on partial opened throttle conditions. According to increasing engine speed, the pressure waves started to come out and be developed after closing the intake port of the engine at carburetor outlet. Reverse flow occurred on the WOT (wide open throttle) condition.

  • PDF

Finite Element Analysis on the Deformation Behavior Safety of a Gas Valve (가스밸브의 변형거동 안전성에 관한 유한요소해석)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.70-75
    • /
    • 2017
  • This paper presents the FEM analysis results on the deformation behavior safety of automatic cut-off horizontal and conventional vertical gas valves. Based on the FEM analysis, the primary maximum deformation of $4.4{\mu}m$ was formed on the right end side of a valve body when the internal gas pressure was supplied on the screw port and gas discharge port of an automatic cut-off horizontal gas valve. And the secondary maximum deformation of $2.9{\mu}m$ was formed on the end side of safety valve port. This small deformation of an automatic cut-off horizontal gas valve is strongly related to the balanced design of a horizontal gas valve main body, which is composed of a screw part, gas outlet port, port for a stem and spindle shaft assembly, and safety valve port. But, the primary maximum deformation of 0.076mm was formed on the upper part of a conventional automatic cut-off vertical gas valve when the internal gas pressure was supplied on the screw port and gas discharge port. And the secondary maximum deformation of 0.055mm was formed on the left end side of a gas outlet port. This may effect on the sealing clearance of o-ring that is inserted on the groove of an automatic cut-off unit. Thus, this paper recommends an automatic cut-off horizontal gas valve compared with that of a conventional gas valve for a gas leakage free mechanism of a LPG cylinder valve.

Development of Primary Reference Gas Mixtures for Liquid Propane (혼합 액체 프로판 표준가스 개발)

  • Jeong, Yun-sung;Kim, Jin-seog;Bae, Hyun-kil;Kang, Ji-hwan;Lee, Seung-ho;Kim, Yong-doo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.49-56
    • /
    • 2021
  • Liquefied Petroleum Gas is divided into liquefied gases containing propane (C3H8) and butane (C4H10). The quality of LPG varies greatly depending on the composition of the mixture, so it is important to measure the composition accurately. It is difficult to determine the composition of the mixture because liquid and gas coexist at room temperature. Therefore, the uncertainty in determining the concentration of hydrocarbons by component is high, and there are many problems that differ from the actual content standard. Therefore, it is necessary to develop a mixed liquid propane standard gas for the composition and accurate concentration of hydrocarbon substances. Mixed liquid propane standard gas is manufactured into bellows-type constant-pressure cylinders by ISO-6142 (2015). The homogeneity of the four standard gases manufactured was confirmed to be GC-FID. The manufacturer's uncertainty of expansion was 0.01 % to 0.30 % and homogeneity was 0.03 % to 0.25 %. In this mixed liquid propane standard gas, the relative expansion uncertainty of weight method, manufacturing consistency, cylinder adsorption and long-term stability was developed within 0.26 %-1.3 9% (95% of confidence level, k=2).

Investigation of Autoignition of Propane and n-Butane Blends Using a Rapid Compression Machine

  • Kim, Hyunguk;Yongseob Lim;Kyoungdoug Min;Lee, Daeyup
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1127-1134
    • /
    • 2002
  • The effects of pressure and temperature on the autoignition of propane and n-butane blends were investigated using a rapid compression machine (RCM) , which is widely used to examine the autoignition characteristics. The RCM was designed to be capable of varying the compression ratio between 5 and 20 and minimize the vortex formation on the cylinder wall using a wedge-shaped crevice. The initial temperature and pressure of the compressed gas were varied in range of 720∼900 K and 1.6∼ 1.8 MPa, respectively, by adjusting the ratio of the specific heat of the mixture by altering the ratio of the non-reactive components (N$_2$, Ar) under a constant effective equivalence ratio (ø$\_$f/= 1.0) The gas temperature after the compression stroke could be obtained from the measured time-pressure record. The results showed a two-stage ignition delay and a Negative Temperature Coefficient (NTC) behavior which were the unique characteristic of the alkane series fuels. As the propane concentration in the blend were increased from 20% and 40% propane, the autoignition delay time increased by approximately 41 % and 55% at 750 K. Numerical reduced kinetic modeling was performed using the Shell model, which introduced some important chemical ideas, represented by the generic species. Several rate coefficients were calibrated based on the experimental results to establish an autoignition model of the propane and n-butane blends. These coefficients can be used to predict the autoignition characteristics in LPG fueled Sl engines.