• Title/Summary/Keyword: LPG accident

Search Result 63, Processing Time 0.031 seconds

A Study on the Quantitative Analysis and Estimation for Surround Building caused by Vapor Cloud Explosion(VCE) in LPG Filling Station (LPG충전소에서 증기운폭발이 주변건물에 미치는 영향의 정량적 해석 및 평가에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.44-49
    • /
    • 2010
  • This paper is estimation of structure damage caused by Explosion in LPG(Liquefied Petroleum Gas) filling station. As we estimate the influence of damage which occur at gas storage tank in filling station. We can utilize the elementary data of safety distance. In this study, the influence of over-pressure caused by VCE(Vapor Cloud Explosion) in filling station was calculated by using the Hopkinson's scaling law and the accident damage was estimated by applying the influence on the adjacent structure into the probit model. As a result of the damage estimation conducted by using the probit model, both the damage possibility of explosion overpressure to structures of max 265 meters away and to glass bursting of 1150 meters away was nearly zero in open space explosion.

Comparison of H2, LNG, and LPG explosion characteristics in a limited space using CFD Simulation (CFD 시뮬레이션을 이용한 제한된 공간에서의 수소, LNG, LPG 폭발특성 비교)

  • Baek, Ju-Hong;Lee, Hyang-Jig;Jang, Chang Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.12-21
    • /
    • 2016
  • The demand for hydrogen is steadily increasing every year, and the facilities to produce and transfer hydrogen are being increased as well. Therefore, the possibility of a critical accident at hydrogen is expected to increase. Furthermore, the materials most likely to cause accidents at industrial sites are LPG 61%, hydrogen 12%, and LNG 10%, and the frequency of accidents due to these three combustible gases is relatively high. Thus, a CFD simulation was used to compute the explosion risk of danger-frequent combustible gases-hydrogen, LNG, and LPG-within a limited space, and the outcomes were compared and analyzed to review the risk of explosion of each gase within a limited space.

A Study on Consequence Analysis of LNG/LPG/Gasoline Station (LNG/LPG/가솔린 Station의 사고피해영향평가 비교)

  • Yoo, Jin-Hwan;Kim, Bum-Su;Lee, Heon-Seok;Ko, Euy-Seok;Lee, Gi-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.54-60
    • /
    • 2009
  • The advancement of industry have increased domestic energy demands and energy facilities such as storage facility, compressed gas pipe, station, and tank lorry. Also, concern about environment have diversified energy source to clean energy such as LNG. In these major energy facilities, major accident can happen to result in fire, explosion, toxic release and etc. In addition, it may cause chain accidents to the adjacent energy facilities. In this research, safety assessment was performed through the consequence analysis of LPG liquefied petroleum gas) station, gasoline station and LNG(liquiefied natural gas) station. The obtained result will be helpful to make a safety guideline of the LPG/LNG station built adjacent to the gasoline station.

  • PDF

Aging Characteristics of Low Pressure LPG Regulators for Domestic Use (가정용 LPG 저압조정기의 경년특성에 관한 연구)

  • Kim Young-Gyu;Kwon Jeong-Rock
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.58-63
    • /
    • 1999
  • Experimental works were carried out to evaluate how the lapse of time affects the performance characteristics and the service life of low pressure LPG regulators for domestic use. Experimental results showed that the operating pressure of safety devices deviated from the opening pressure value and the closing pressure value from just 1 year after service, and the operating pressure of regulators used for 7${\~}$8 years notably deviated from the reference value of the adjusting pressure and the closing pressure. And the material properties of springs and diaphragms deteriorated after 5${\~}$6 years of service. Thus, it is estimated that low pressure LPG regulators have approximately 6 years of service life. However, it is highly recommended that regulators exceeding 5 years of service should be replaced for the safety of consumer and accident prevention even if they are operating normally.

  • PDF

A Study on the Control of Hazard Facilities Management system in Urban area by utilizing GIS (지리정보시스템(GIS)을 이용한 도심지 내의 위해시설 관리시스템 구축에 관한 연구)

  • Ham, Eun-Gu;Roh, Sam-Kew
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.9-15
    • /
    • 2005
  • This research developed the RMIS(Risk Management Information System) which focus on works of risk management fields required of apply of a space information, and focus on the DB to establish and apply the space information efficiently with research scope on the LPG refueling station in city. On the basis of the RMIS, this research provides the baseline to lead on an efficiency of safety inspection of LPG refueling station, advance risk assessment, and efficient making decision of an accident correspondence assessment with interlocking the GIS representing risk through the automation of a quantitative risk assessment standardize requirement to control at real-time. The RMIS development process is as follows. firstly, Relational Database(RDB) was developed by using fundamental data both On-site and Off-site relating data as peforming risk assessment on the LPG refueling station in city. Second, the risk management integral database system was developed to monitor and control the risk efficiently for user with using the Visual Basic Program. Third, through interlocking the risk management integral database system and the GIS(Falcon-map) was suggested the decision making method. Represented results through out the RMIS program development are as follows. Firstly, the RMIS was established the mutual information to advance management the risk efficiently for user and inspector with using the risk management data. Second, as this study managed risk for on-site and off-site separately and considered effect for inside and outside of facility, constructed the basis on safety management which can respond to major accident. Third, it was composed the baseline to making decision that on the basis of user interface.

Development of a Tool for Predicting the Occurrence Time of BLEVE in Small LPG Storage Tanks (LPG소형저장탱크 BLEVE 발생 시점 예측 툴 개발)

  • Chae, Chung Keun;Lee, Jae Hun;Chae, Seung Been;Kim, Yong Gyu;Han, Shin Tak
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.74-83
    • /
    • 2020
  • In Korea, about 110,000 LPG small storage tanks of less than three tons have been installed in restaurants, houses and factories, and are used as LPG supply facilities for cooking, heating and industrial use. In the case of combustible liquefied gas storage tanks, the tank may rupture due to the temperature increase of the tank steel plate (approximately 600℃) even when the safety valve is operating normally, causing large-scale damage in an instant. Therefore, in the event of a fire near the LPG small storage tank, it is necessary to accurately predict the timing of the BLEVE(Boiling Liquid Expanding Vapour Explosion) outbreak in order to secure golden time for lifesaving and safely carry out fire extinguishing activities. In this study, we have first investigated the results of a prior study on the prediction of the occurrence of BLEVE in the horizontal tanks. And we have developed thermodynamic models and simulation program on the prediction of BLEVE that can be applied to vertical tanks used in Korea, have studied the effects of the safety valve's ability to vent, heat flux strength of external fires, size of tanks, and gas remaining in tanks on the time of BLEVE occurrence and have suggested future utilization measures.

Study on Prediction System Construction of Fire.Explosion Accident by NG & LPG among Domestic Gas Accidents (국내 가스 사고사례 중 NG 및 LPG의 가스 화재.폭발사고 예측시스템 구축에 관한 연구)

  • Ko Jae-Sun;Kim Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.48-55
    • /
    • 2006
  • In order to establish the comprehensively, quantitatively predictable program to the fire and explosion accidents in the urban gas system, and to set up domestic criteria of societal risk, the collected urban gas accident data have been deeply analyzed. The Poisson probability distribution functions with t=5 for the database of the gas accidents in recent 11 year shows that 'careless work-explosion-pipeline' item has the lowest frequency, whereas 'joint loosening & erosion-release-pipeline' item has the highest frequency. And thus the proper counteractions must be carried out. The further works requires setting up successive database on the fire and explosion accidents systematically to obtain reliable analyses.

  • PDF

Impact Range Analysis of Small LPG Storage Tank Explosions at Highway Rest Areas (고속도로 휴게소 소형 LPG 저장탱크 폭발에 따른 영향범위 분석)

  • Seung duk Jeon;Soon Beom Lee;Jai Young Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.319-327
    • /
    • 2023
  • This study analyzes the risks of explosions of small LPG storage tanks installed at highway rest areas. For this purpose, the ranges of the effect of thermal radiation and overpressure caused by the BLEVE(Boiling Liquid Expansion Vapor Explosion)and VCE(Vapor Cloud Explosion) of a 2900-kg small LPG storage tank installed at highway rest areas were quantitatively evaluated by applying the Areal Location of Hazardous Atmospheres program. The ranges of influence of the derived explosion overpressure and thermal radiation were found to have a maximum radii of 336 m and 423 m, respectively. The study determined that those within 269 m could be severely injured by an explosion overpressure of 3.5 psi, and fatalities from thermal radiation of 10 kw/m2 could occur within 192 m of the exploded storage tank. The safety management plan for the LPG storage tank was discussed while considering the auxiliary facilities of highway rest areas and the extent of the damage impact. These research results will help improve safety accident prevention regulations considering the environment and facilities of the rest areas as well as the safety management of small LPG storage tanks installed at highway rest areas.

An Availability Assessment of Protection Wall Installed in LPG Filling Station (LPG 충전소 내 설치된 방호벽의 효용성 평가)

  • Lee, Jin-Han;Jo, Young-Do;Moon, Jong-Sam;Kim, Lae Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.38-45
    • /
    • 2018
  • Jet fire, pool fire, and vapor cloud explosion are major accident scenarios in LPG filling station. The protection wall would mitigate radiation effect in a jet fire. In case of a pool fire, the protection wall would restrict expanding the pool area. The protection wall might both obstruct the dispersion of released vapor and protect blast overpressure in a vapor cloud explosion scenario. In this paper, An availability assessment method of the protection wall how much reduce damage to receptors is proposed. Additionally application cases are presented for the effectiveness of protection wall in the LPG filling station. The study shows that the protection wall can effectively reduce the death probabilities of receptors located behind the wall in cases of the jet fires and the vapor cloud explosions.

A Study on the Damage of Flame caused by the Vapor Cloud Explosion in LPG Filling Station (LPG충전소에서 증기운폭발에 의한 화염의 피해에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.53-60
    • /
    • 2010
  • LPG(Liquefied Petroleum Gas) vehicles in metropolitan area are being applied to improve air quality and have been proven effective for the reduction of air pollutant. In addition, LPG demand is growing rapidly as an environmentally friendly energy source and its gas station is also increasing every year. Consequently, this study tries to find out the influence of flame caused by the VCE(Vapor Cloud Explosion) in filling station on the adjacent combustibles and people by simulating relevant quantity of TNT. In addition, the damage estimation was conducted by using API regulations. If the scale of the radiation heat is known by calculating the distance of flame influence from the explosion site, the damage from the site can be easily estimated. And the accident damage was estimated by applying the influence on the adjacent structures and people into the PROBIT model. According to the probit analyze, the spot which is 30m away from the flame has 100% of the damage probability by the first-degree burn, 99.2% of the damage probability by the second-degree burn and 93.4% of the death probability by the fire.