• Title/Summary/Keyword: LP gas burner

Search Result 3, Processing Time 0.021 seconds

Emission Characteristics of LP Gas Burner for the Variation of Combustion Conditions (연소조건 변화에 따른 LP가스버너의 배기특성)

  • 이병곤;오택흠
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2001
  • An experimental study was carried out to investigate the emission characteristics of LP gas burner for the Practical combustion conditions including fm voltage, inlet area, gas Pressure, emission resistance, duct length and height. The result shows that CO is almost remains constant for the emission fan voltage, but significantly increases with the reduction rate of air inlet, up to 3000ppm at 50% of reduction rate. Also, the variation of gas pressure has no effect to CO of gas boiler due to its governor which controls gas pressure secondly, but it gives an rapid increase of CO for the gas range. The emission resistance test shows that CO is suddenly increased with the reduction rate of emission duct above 70% and main burner is stopped at 90%. The reverse wind test shows that CO is suddenly increased with the air velocity above 7m/s and main burner is stopped at 9m/s. The more horizontal length of emission duct is long and the vertical height is low, CO is infinitesimally increased.

  • PDF

A Gas Accident Statistics and Analysis (가스사고 통계 및 분석에 관한 고찰)

  • Kwon, H.J.;Park, C.O.;Park, C.I.;Yeo, C.H.;Lee, J.W.;Hong, J.R.
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.11 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • Among the various cases of fire accident, gas accident which is roost essential have a lot of forms and causes. The quantity consumed of gas is increasing because of increment of gas-using families and variations of gas machinery. The quantity consumed of gas in 2007 was 35078 tons and the average rate of increasement was 9.4%. The amount of gas accident was on the peak at 1995 when 557 accidents occurred in a year. In 2007, 123 gas accidents was occurred and the average rate of diminution was 11.5%. Accidents by LP gas took 80% of the whole accident and city gas and high pressure gas took 20%. In case of LP gas, accidents were usually occurred because of lack of blocking after the removal of gas machinery and moveable butane burner. Especially, the accidents cause by carelessness of a provider is increasing. Gas accidents which generate damage of human life and property, are caused by users' carelessness, providers' carelessness, inferiority of structure and old products. In this thesis, We will classify the gas accidents. Furthermore through the classification of accidents by forms, causes and regions, this thesis going to be a reference to understand and prevent the accidents.

  • PDF

The Experimental Studies of Vacuum Residue Combustion in a Small Scale Reactor (소규모 반응로를 이용한 감압 잔사유지 연소실험)

  • Park Ho Young;Kim Young Ju;Kim Tae Hyung;Seo Sang Il
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.268-276
    • /
    • 2005
  • Vacuum Residue (VR) combustion tests were carried out with a 20 kg/hr (fuel feed rate) small scale reactor. The nozzle used was a steam atomized, internal mixing type. Compared to heavy oil, vacuum residue used in this work is extremely high viscous and contains high percentages of sulfur, carbon residue and heavy metals. To ignite atomized VR particles, it was necessary to preheat the reactor, and it has been done with LP gas. The axial and radial gas temperature, major species concentrations and solid sample were analyzed when varying the fuel feed rate. The main reaction zone of atomized VR-air flame in a reactor was anticipated within about 1 m from the burner tip by considering the profiles oi gas temperature, species concentration and particle size measured along with the reactor. At downstream, the thermally, fully developed temperature distribution was obtained. SEM photographs revealed that VR carbon particles collected from the reactor are porous and have many blow-holes on the particle surface.