• Title/Summary/Keyword: LOX

Search Result 403, Processing Time 0.055 seconds

Inhibition of Red Ginseng on 5-Hydroxyeicosatetraenoic Acid (5-HETE) Biosynthesis from Arachidonic Acid in Helicobacter Pylori-infected Gastric Cells

  • Park Soo-Jin
    • Nutritional Sciences
    • /
    • v.9 no.3
    • /
    • pp.152-158
    • /
    • 2006
  • Helicobacter pylori (H. pylori) infection rapidly stimulated either COX-2 or 5-LOX and released arachidonic acid metabolites that have been considered as pivotal mediators in H. pylori-induced inflammatory responses. To determine whether red ginseng extract (RGE) can suppress the biosynthesis of 5(S)-hydroxyeicosatetraenoic acids (HETE), a precursor metabolite of leukotrienes B4 (LTB4) in H. pylori-provoked inflammatory responses in gastric epithelial cells, the biosynthesis of monohydroxy fatty acids was measured using radioactive arachidonic acid and validated by RP-HPLC using non-radioactive AA as substrate in AGS cells cocultured with H. pylori (ATCC 43504) with or without pretreatment of RGE. Among three known major HETEs, H. pylori infection specifically induced the biosynthesis of $^{14}C-5(S)-HETE$ rather than the complex of $^{14}C-15S-/^{14}C-12(S)-HETE$ from $^{14}C-AA$, concomitantly obtained by HPLC(p<0.01). RGE, 1 to $100{\mu}g/ml$, selectively suppressed H. pylori-stimulated $^{14}C-5(S)-HETE$ production implying the attenuation of 5-lipoxygenase activity, of which was similar to known LOX inhibitor NDGA $(10{\mu}M)$ (p<0.01). However, the amount of 5(S)-HETE was significantly reduced by higher dose of RGE $(100{\mu}g/ml)$ (p<0.05). These results indicated that LOX pathway might be one of principle pathogenic mechanisms of H. pylori and red ginseng could be a nutraceutical against H. pylori infection through inhibiting action of LOX activity.

Cytosolic phospholipase A2, lipoxygenase metabolites, and reactive oxygen species

  • Kim, Cheol-Min;Kim, Joo-Young;Kim, Jae-Hong
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.555-559
    • /
    • 2008
  • Reactive oxygen species (ROS) are generated in mammalian cells via both enzymatic and non-enzymatic mechanisms. Although certain ROS production pathways are required for the performance of specific physiological functions, excessive ROS generation is harmful, and has been implicated in the pathogenesis of a number of diseases. Among the ROS-producing enzymes, NADPH oxidase is widely distributed among mammalian cells, and is a crucial source of ROS for physiological and pathological processes. Reactive oxygen species are also generated by arachidonic acid (AA) metabolites, which are released from membrane phospholipids via the activity of cytosolic phospholipase $A_2$ ($cPLA_2$). In this study, we describe recent studies concerning the generation of ROS by AA metabolites. In particular, we have focused on the manner in which AA metabolism via lipoxygenase (LOX) and LOX metabolites contributes to ROS generation. By elucidating the signaling mechanisms that link LOX and LOX metabolites to ROS, we hope to shed light on the variety of physiological and pathological mechanisms associated with LOX metabolism.

Analysis of the Flow in LOX Manifold in Liquid Rocket

  • Kim, Hakjong;Byun, Yung-Hwan;Yang Na
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.142-147
    • /
    • 2004
  • The flow in the LOX manifold of liquid rocket has been investigated using a CAE technique with an objective of economical modeling of injection holes in order to reduce the overall computational cost of flow analysis during the optimal rocket design procedure. The computational geometry is very close to that of the actual rocket design and the flow condition through the injection holes resembles that in the actual manifold of the liquid rocket. The result shows that the flow in the plane just above the injection holes is not uniformly distributed in terms of pressure and mass flow rate and this is attributed to the large-scale flow patterns present the LOX manifold. Thus, the flow physics should be understood correctly before making any attempt to model the injection holes. In the present study, several boundary conditions which were designed to effectively replace the presence of injection holes have been tested and it was found that a simple modeling can be possible by mimicking the actual geometry of the injection holes. By using this simple injection hole modeling, it was able to obtain about 30% reduction in computational cost but it was still able to reproduce the flow patterns correctly. Also the flow has been analyzed after incorporating a couple of different types of pre-distributors in LOX manifold and the effect of those will be discussed.

  • PDF

Parallel Numerical Simulation of Shear Coaxial $LOX/GH_2$ Jet Flame in Rocket Engine Combustor

  • Matsuyama S.;Shinjo J.;Mizobuchi Y.;Ogawa S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.401-404
    • /
    • 2006
  • An axisymmetric simulation with detailed chemistry and fine resolution mesh is conducted for the $LOX/GH_2$ jet flame in rocket engine combustor. A preliminary result is shown for a single shear coaxial injector element. The fundamental features of the $LOX/GH_2$ coaxial jet flame is explored by the analysis of simulated flame.

  • PDF

Numerical Study of CH4/LOx Combustion of Shear-coaxial Injector in High Pressure Combustion Chamber of Liquid Rocket (액체로켓 동축인젝터(CH4/LOx)의 고압 연소실 내 연소 유동장에 대한 수치적 연구)

  • Kim, Jung Eun;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.311-313
    • /
    • 2014
  • High pressure combustion with multiphase--liquid, gas, and supercritical phase--mixtures are widely used technology in the high efficiency liquid propellent rocket engine. This is the typical characteristics differentiate from the combustor of conventional air-breathing engines. Therefore, successful research of high pressure combustion at supercritical condition is essential to develope a high efficiency liquid rocket engine. Numerical studies have been carried out to explore capabilities of numerical method for LOx-CH4 non-premixed flames at high pressure. In this paper, corresponding numerical results are presented and compared with experimental result of MASCOTTE facility.

  • PDF

Simultaneous and Sequential Integration by Cre/loxP Site-Specific Recombination in Saccharomyces cerevisiae

  • Choi, Ho-Jung;Kim, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.826-830
    • /
    • 2018
  • A Cre/loxP-${\delta}$-integration system was developed to allow sequential and simultaneous integration of a multiple gene expression cassette in Saccharomyces cerevisiae. To allow repeated integrations, the reusable Candida glabrata MARKER (CgMARKER) carrying loxP sequences was used, and the integrated CgMARKER was efficiently removed by inducing Cre recombinase. The XYLP and XYLB genes encoding endoxylanase and ${\beta}$-xylosidase, respectively, were used as model genes for xylan metabolism in this system, and the copy number of these genes was increased to 15.8 and 16.9 copies/cell, respectively, by repeated integration. This integration system is a promising approach for the easy construction of yeast strains with enhanced metabolic pathways through multicopy gene expression.

Development of 10ton Thrust Liquid Rocket Engine using LOX+LNG with Turbopump System called CHASE-10 (액체산소와 액체메탄을 사용하며, 고압터보펌프가 장착된 추력 10톤급 액체로켓엔진 CHASE-10의 개발)

  • Kim Kyoung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.181-184
    • /
    • 2006
  • We successfully completed the development test for a 10-ton thrust liquid rocket engine using LOX+LNG (Liquefied Natural Gas, or Methane) with a high performance turbopump system. Resulting from the success of the regenerative-cooling capability using LNG, high pressure-generating capability and gas-generating performance, etc, methane engine with the product name CHASE-10 will be commercialized in the near future.

  • PDF

Acoustic Response of Hydrogen/Liquid Oxygen Flame in Stagnation-Point Flow (정체점 유동장에서 수소-액체산소 화염의 음향파 응답 특성)

  • Park, Sung-Woo;Chung, Suk-Ho;Kim, Hong-Jip
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.440-446
    • /
    • 2003
  • Steady-state structure and acoustic pressure responses of GH$_2$-LOx diffusion flames in stagnation-point flow configuration have been studied numerically with a detailed chemistry to investigate the acoustic instabilities. The Rayleigh criterion is adopted to judge the instability of the GH$_2$-LOx flames from amplification and attenuation responses at various acoustic pressure oscillation conditions for near-equilibrium to near-extinction regimes. Steady state flame structure showed that the chain branching zone is embedded in surrounding two recombination zones. The acoustic responses of GH$_2$-LOx flame showed that the responses in near-extinction regime always have amplification effect regardless of realistic acoustic frequency. That is, GH$_2$-LOx flame near-extinction is much sensitive to pressure perturbation because of the strong effect of a finite-chemistry.

Study on the Internal Mixing Flow Characteristics for Recess Length in a Swirl Coaxial Injector (스월 동축형 인젝터에서 리세스 길이에 따른 내부 혼합 유동의 특성 연구)

  • Kim, Sung-Hyuk;Yoon, Jung-Soo;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.13-18
    • /
    • 2010
  • This study aim to investigate the internal mixing flow characteristics by recess length of swirl coaxial injector for gas generator has propellant of Kerosene-LOx. Recess length is a very important element, have influence in spray stability and LOx post damage. The influence of recess length was analyzed by visualizing internal flow and measuring liquid film thickness and manifold pressures. Also, frequency characteristics were analyzed by liquid film thickness measurement with mixing time.

  • PDF