• 제목/요약/키워드: LOWESS

검색결과 43건 처리시간 0.022초

cDNA Microarray Normalization에 대한 연구

  • 김종영;이재원
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.331-334
    • /
    • 2003
  • 마이크로 어레이(microarray)실험에서 표준화(normalization)는 유전자의 발현수준에 영향을 미치는 여러 기술적인 변인을 제거하는 과정이다. cDNA microarray normalization에 있어 여러 방법이 제안되었지만, 이중 print-tip 효과가 존재할 때 사용되는 방법으로 print-tip lowess normalization이 대표적으로 사용된다. normalization에 사용되는 lowess 함수는 데이터의 특성에 따라 window width를 정해야만 연구의 목적에 맞는 결과를 도출할 수 있다. 본 논문에서는 각각의 tip에서 최적의 window width를 계산하는 절차를 논의하였다. 또한 이의 결과와 기존의 같은 window width를 사용하는 print-tip lowess normalization 결과와 비교 평가하여 normalization의 기본 원칙에 대한 타당성을 확인하였다.

  • PDF

장기간의 서울지점 강우자료에 나타난 월간 기후변화 특성 (Characteristics of Inter-monthly Climatic Change Appeared in Long-term Seoul Rainfall)

  • 황석환;김중훈;유철상;이정호
    • 대한토목학회논문집
    • /
    • 제30권1B호
    • /
    • pp.1-11
    • /
    • 2010
  • 본 논문에서는 측우기 관측 자료계열(CWK)과 근대우량계 관측 자료계열(MRG)의 월별 장기변화 특성을 파악하기 위하여 통계적 경향성 검정방법 5가지를 이용하여 각 자료계열의 경향성 여부를 검정하였다. 더불어 각 자료계열별로 연도별 시간축과 월별 시간축을 동시에 고려한 2차원 LOWESS 회귀분석을 실시하여 강우의 변동 특성을 분석하였다. 경향성 분석결과 검정방법별로 95% 신뢰수준에서 경향성에 대해 큰 유의성이 있다고 보기는 어려웠다. 4가지 강우특성에 대한 2차원 LOWESS 회귀분석 결과, 1980년 이후부터 강우의 양적 증가추세와 더불어 강우의 월간 변화폭도 급격한 증가추세를 보이고 있는 것으로 나타났다.

장기간의 서울지점 강우자료에 나타난 월간 기후변화 특성 (Characteristics of Inter-monthly Climatic Change Appeared in Long-term Seoul Rainfall)

  • 황석환;김중훈;유철상;정성원;이정호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1172-1176
    • /
    • 2009
  • 본 논문에서는 측우기 관측 자료계열(CWK)과 근대우량계 관측 자료계열(MRG)의 월별 장기변화 특성을 파악하기 위하여 각 자료계열별로 연도별 시간축과 월별 시간축을 동시에 고려한 2차원 LOWESS 회귀분석을 실시하여 강우의 변동 특성을 분석하였다. 4가지 강우특성에 대한 2차원 LOWESS 회귀분석 결과, 1980년 이후부터 강우의 양적 증가추세와 더불어 강우의 월간 변화폭도 급격한 증가추세를 보이고 있는 것으로 나타났다.

  • PDF

Trend Analysis of Stream Qualities In Nakdong River by the LOWESS method

  • Yoon, Yong-Hwa;Um, Hee-Jung;Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1019-1026
    • /
    • 2008
  • The goal of this paper is to analysis the trend of stream quality about the upstream, middle stream and high areas of Nakdong River measurement points from January 1998 to December 2006. and to suggest some policy alternatives in Nakdong river. It used the three different monthly time series data such as BOD (biochemical oxygen demand), TN (Total Nitrogen) and TP(Total Phosphorus), of the three of Nakdong River measurement points. BOD, TN and TP data are analyzed with the LOWESS(Locally Weighted Scatter plot Smoother) nonparametric method.

  • PDF

Microarray 자료분석에서 표준화

  • 이성곤;박태성;최호식
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2001년도 추계학술발표회 논문집
    • /
    • pp.149-153
    • /
    • 2001
  • 본 논문은 microarray를 분석하기위한 표준화에 대한 여러 방법들을 소개하고 비교해보았다. Microarray 연구는 Human Genome Project에서 파생된 여러 생명공학 기술 중 가장 널리 사용되는 기술로 기존에는 하지 못했던 총체적인 유전자의 발현상황을 탐색할 수 있다는 장점을 지니고 있으나, 자료들에 일정한 패턴이 나타나거나 잡음이 첨가되어 정보의 추출이 용의하지 않다는 단점을 지니고 있다. 특히 자료에 일정한 패턴이 있는 경우에 올바르지 못한 결론을 이끌어낼 수도 있기에 이 패턴을 제거하는 표준화작업은 microarray 분석에 있어서 매우 중요한 처리과정이다. 본 논문에서는 표준화방법들을 소개하고 각각 가지고 있는 장단점을 실제 국내에서 얻어진 자료를 통해 비교하였고, 그 결과 LOWESS 적합을 통한 표준화방법이 타 방법에 비해 유용한 점이 많음을 확인할 수 있었다.

  • PDF

낙동강 수계의 수질오염총량 자료를 이용한 비모수적 수질추세 분석 (A Nonparametric Trend Tests Using TMDL Data in the Nakdong River)

  • 김미아;이소영;문현생;조항수;이재관;김경현
    • 한국물환경학회지
    • /
    • 제33권1호
    • /
    • pp.40-50
    • /
    • 2017
  • We were interested in the long-term temporal and spatial variability trends of water quality. Trend tests such as the Seasonal and Regional Kendall tests and LOWESS (LOcally WEighted Scatter plot Smoother) have been recommended as outstanding tools for trend detection. In this study, we conducted four types of nonparametric trend tests (Seasonal and Regional Kendall tests, LOWESS, and flow-adjusted Seasonal Kendall). We aimed to identify water quality trends using the monthly data for five variables (BOD, COD, TN, TP, and flow) collected from 24 sites in the Nakdong River from August 2004 to December 2013. According to the Regional Kendall test, BOD, COD, and TN increased but TP decreased trend. The Seasonal Kendall test showed that BOD, TN, and TP remained constant at 62.5-83.3% of the sites. COD remained constant at 58.3% of the sites. LOWESS showed that TP gradually increased between 2007 and 2008, then decreased slowly at the Gumi, Geumhogang6, Daeam-1 and Milyanggang3 sites. BOD increased slightly between 2008 and 2009, and then decreased slowly at the Namgang4-1 site. Lastly, a flow-adjusted Seasonal Kendall test was conducted. There were different results between Seasonal Kendall and flow-adjusted Seasonal Kendall tests at 11 of the 24 sites. According to the results from six of the eleven sites, BOD increased at one site, showed no trends at three sited, and decreased at two sites. Each of COD, TN increased at two, one site. but TP decreased at two sites.

New Normalization Methods using Support Vector Machine Regression Approach in cDNA Microarray Analysis

  • Sohn, In-Suk;Kim, Su-Jong;Hwang, Chang-Ha;Lee, Jae-Won
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.51-56
    • /
    • 2005
  • There are many sources of systematic variations in cDNA microarray experiments which affect the measured gene expression levels like differences in labeling efficiency between the two fluorescent dyes. Print-tip lowess normalization is used in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. However, print-tip lowess normalization performs poorly in situation where error variability for each gene is heterogeneous over intensity ranges. We proposed the new print-tip normalization methods based on support vector machine regression(SVMR) and support vector machine quantile regression(SVMQR). SVMQR was derived by employing the basic principle of support vector machine (SVM) for the estimation of the linear and nonlinear quantile regressions. We applied our proposed methods to previous cDNA micro array data of apolipoprotein-AI-knockout (apoAI-KO) mice, diet-induced obese mice, and genistein-fed obese mice. From our statistical analysis, we found that the proposed methods perform better than the existing print-tip lowess normalization method.

  • PDF

비모수 통계기법을 이용한 낙동강 수계의 수질 장기 경향 분석 (Long-Term Trend Analyses of Water Qualities in Nakdong River Based on Non-Parametric Statistical Methods)

  • 김주화;박석순
    • 한국물환경학회지
    • /
    • 제20권1호
    • /
    • pp.63-71
    • /
    • 2004
  • The long-tenn trend analyses of water qualities were performed for 49 monitoring stations located in Nakdong River. Water quality parameters used in this study are the monthly data of BOD(Biological Oxygen Demand), TN(Total Nitrogen) and TP(Total Phosphorus) measured from 1990 to 1999. The long-tenn trends were analyzed by Seasonal Mann-Kendall Test and Locally WEighted Scatter plot Smoother(LOWESS). Nakdong river was divided into four subbasins, including upstream watershed, midstream watershed, western downstream watershed and eastern downstream watershed. The results of Seasonal Mann-Kendall Test indicated that there would be no trends of BOD in upstream watershed, western and eastern downstream watershed. Trends of BOD were downward in midstream watershed. For TN and TP, there were upward trends in all of watersheds. But LOWESS curves suggested that BOD, TN and TP concentrations generally increased between 1990 and 1996, then resumed decreasing.

Robust Nonparametric Regression Method using Rank Transformation

    • Communications for Statistical Applications and Methods
    • /
    • 제7권2호
    • /
    • pp.574-574
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.

Robust Nonparametric Regression Method using Rank Transformation

  • Park, Dongryeon
    • Communications for Statistical Applications and Methods
    • /
    • 제7권2호
    • /
    • pp.575-583
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.

  • PDF