마이크로 어레이(microarray)실험에서 표준화(normalization)는 유전자의 발현수준에 영향을 미치는 여러 기술적인 변인을 제거하는 과정이다. cDNA microarray normalization에 있어 여러 방법이 제안되었지만, 이중 print-tip 효과가 존재할 때 사용되는 방법으로 print-tip lowess normalization이 대표적으로 사용된다. normalization에 사용되는 lowess 함수는 데이터의 특성에 따라 window width를 정해야만 연구의 목적에 맞는 결과를 도출할 수 있다. 본 논문에서는 각각의 tip에서 최적의 window width를 계산하는 절차를 논의하였다. 또한 이의 결과와 기존의 같은 window width를 사용하는 print-tip lowess normalization 결과와 비교 평가하여 normalization의 기본 원칙에 대한 타당성을 확인하였다.
본 논문에서는 측우기 관측 자료계열(CWK)과 근대우량계 관측 자료계열(MRG)의 월별 장기변화 특성을 파악하기 위하여 통계적 경향성 검정방법 5가지를 이용하여 각 자료계열의 경향성 여부를 검정하였다. 더불어 각 자료계열별로 연도별 시간축과 월별 시간축을 동시에 고려한 2차원 LOWESS 회귀분석을 실시하여 강우의 변동 특성을 분석하였다. 경향성 분석결과 검정방법별로 95% 신뢰수준에서 경향성에 대해 큰 유의성이 있다고 보기는 어려웠다. 4가지 강우특성에 대한 2차원 LOWESS 회귀분석 결과, 1980년 이후부터 강우의 양적 증가추세와 더불어 강우의 월간 변화폭도 급격한 증가추세를 보이고 있는 것으로 나타났다.
본 논문에서는 측우기 관측 자료계열(CWK)과 근대우량계 관측 자료계열(MRG)의 월별 장기변화 특성을 파악하기 위하여 각 자료계열별로 연도별 시간축과 월별 시간축을 동시에 고려한 2차원 LOWESS 회귀분석을 실시하여 강우의 변동 특성을 분석하였다. 4가지 강우특성에 대한 2차원 LOWESS 회귀분석 결과, 1980년 이후부터 강우의 양적 증가추세와 더불어 강우의 월간 변화폭도 급격한 증가추세를 보이고 있는 것으로 나타났다.
Journal of the Korean Data and Information Science Society
/
제19권4호
/
pp.1019-1026
/
2008
The goal of this paper is to analysis the trend of stream quality about the upstream, middle stream and high areas of Nakdong River measurement points from January 1998 to December 2006. and to suggest some policy alternatives in Nakdong river. It used the three different monthly time series data such as BOD (biochemical oxygen demand), TN (Total Nitrogen) and TP(Total Phosphorus), of the three of Nakdong River measurement points. BOD, TN and TP data are analyzed with the LOWESS(Locally Weighted Scatter plot Smoother) nonparametric method.
본 논문은 microarray를 분석하기위한 표준화에 대한 여러 방법들을 소개하고 비교해보았다. Microarray 연구는 Human Genome Project에서 파생된 여러 생명공학 기술 중 가장 널리 사용되는 기술로 기존에는 하지 못했던 총체적인 유전자의 발현상황을 탐색할 수 있다는 장점을 지니고 있으나, 자료들에 일정한 패턴이 나타나거나 잡음이 첨가되어 정보의 추출이 용의하지 않다는 단점을 지니고 있다. 특히 자료에 일정한 패턴이 있는 경우에 올바르지 못한 결론을 이끌어낼 수도 있기에 이 패턴을 제거하는 표준화작업은 microarray 분석에 있어서 매우 중요한 처리과정이다. 본 논문에서는 표준화방법들을 소개하고 각각 가지고 있는 장단점을 실제 국내에서 얻어진 자료를 통해 비교하였고, 그 결과 LOWESS 적합을 통한 표준화방법이 타 방법에 비해 유용한 점이 많음을 확인할 수 있었다.
We were interested in the long-term temporal and spatial variability trends of water quality. Trend tests such as the Seasonal and Regional Kendall tests and LOWESS (LOcally WEighted Scatter plot Smoother) have been recommended as outstanding tools for trend detection. In this study, we conducted four types of nonparametric trend tests (Seasonal and Regional Kendall tests, LOWESS, and flow-adjusted Seasonal Kendall). We aimed to identify water quality trends using the monthly data for five variables (BOD, COD, TN, TP, and flow) collected from 24 sites in the Nakdong River from August 2004 to December 2013. According to the Regional Kendall test, BOD, COD, and TN increased but TP decreased trend. The Seasonal Kendall test showed that BOD, TN, and TP remained constant at 62.5-83.3% of the sites. COD remained constant at 58.3% of the sites. LOWESS showed that TP gradually increased between 2007 and 2008, then decreased slowly at the Gumi, Geumhogang6, Daeam-1 and Milyanggang3 sites. BOD increased slightly between 2008 and 2009, and then decreased slowly at the Namgang4-1 site. Lastly, a flow-adjusted Seasonal Kendall test was conducted. There were different results between Seasonal Kendall and flow-adjusted Seasonal Kendall tests at 11 of the 24 sites. According to the results from six of the eleven sites, BOD increased at one site, showed no trends at three sited, and decreased at two sites. Each of COD, TN increased at two, one site. but TP decreased at two sites.
There are many sources of systematic variations in cDNA microarray experiments which affect the measured gene expression levels like differences in labeling efficiency between the two fluorescent dyes. Print-tip lowess normalization is used in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. However, print-tip lowess normalization performs poorly in situation where error variability for each gene is heterogeneous over intensity ranges. We proposed the new print-tip normalization methods based on support vector machine regression(SVMR) and support vector machine quantile regression(SVMQR). SVMQR was derived by employing the basic principle of support vector machine (SVM) for the estimation of the linear and nonlinear quantile regressions. We applied our proposed methods to previous cDNA micro array data of apolipoprotein-AI-knockout (apoAI-KO) mice, diet-induced obese mice, and genistein-fed obese mice. From our statistical analysis, we found that the proposed methods perform better than the existing print-tip lowess normalization method.
The long-tenn trend analyses of water qualities were performed for 49 monitoring stations located in Nakdong River. Water quality parameters used in this study are the monthly data of BOD(Biological Oxygen Demand), TN(Total Nitrogen) and TP(Total Phosphorus) measured from 1990 to 1999. The long-tenn trends were analyzed by Seasonal Mann-Kendall Test and Locally WEighted Scatter plot Smoother(LOWESS). Nakdong river was divided into four subbasins, including upstream watershed, midstream watershed, western downstream watershed and eastern downstream watershed. The results of Seasonal Mann-Kendall Test indicated that there would be no trends of BOD in upstream watershed, western and eastern downstream watershed. Trends of BOD were downward in midstream watershed. For TN and TP, there were upward trends in all of watersheds. But LOWESS curves suggested that BOD, TN and TP concentrations generally increased between 1990 and 1996, then resumed decreasing.
Communications for Statistical Applications and Methods
/
제7권2호
/
pp.574-574
/
2000
Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.
Communications for Statistical Applications and Methods
/
제7권2호
/
pp.575-583
/
2000
Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.