• Title/Summary/Keyword: LOW LIGHT

Search Result 4,255, Processing Time 0.034 seconds

A Study on the Measurement of Respiratory Rate Using Image Alignment and Statistical Pattern Classification (영상 정합 및 통계학적 패턴 분류를 이용한 호흡률 측정에 관한 연구)

  • Moon, Sujin;Lee, Eui Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.10
    • /
    • pp.63-70
    • /
    • 2018
  • Biomedical signal measurement technology using images has been developed, and researches on respiration signal measurement technology for maintaining life have been continuously carried out. The existing technology measured respiratory signals through a thermal imaging camera that measures heat emitted from a person's body. In addition, research was conducted to measure respiration rate by analyzing human chest movement in real time. However, the image processing using the infrared thermal image may be difficult to detect the respiratory organ due to the external environmental factors (temperature change, noise, etc.), and thus the accuracy of the measurement of the respiration rate is low.In this study, the images were acquired using visible light and infrared thermal camera to enhance the area of the respiratory tract. Then, based on the two images, features of the respiratory tract region are extracted through processes such as face recognition and image matching. The pattern of the respiratory signal is classified through the k-nearest neighbor classifier, which is one of the statistical classification methods. The respiration rate was calculated according to the characteristics of the classified patterns and the possibility of breathing rate measurement was verified by analyzing the measured respiration rate with the actual respiration rate.

Room Temperature Imprint Lithography for Surface Patterning of Al Foils and Plates (알루미늄 박 및 플레이트 표면 미세 패터닝을 위한 상온 임프린팅 기술)

  • Tae Wan Park;Seungmin Kim;Eun Bin Kang;Woon Ik Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.65-70
    • /
    • 2023
  • Nanoimprint lithography (NIL) has attracted much attention due to its process simplicity, excellent patternability, process scalability, high productivity, and low processing cost for pattern formation. However, the pattern size that can be implemented on metal materials through conventional NIL technologies is generally limited to the micro level. Here, we introduce a novel hard imprint lithography method, extreme-pressure imprint lithography (EPIL), for the direct nano-to-microscale pattern formation on the surfaces of metal substrates with various thicknesses. The EPIL process allows reliable nanoscopic patterning on diverse surfaces, such as polymers, metals, and ceramics, without the use of ultraviolet (UV) light, laser, imprint resist, or electrical pulse. Micro/nano molds fabricated by laser micromachining and conventional photolithography are utilized for the nanopatterning of Al substrates through precise plastic deformation by applying high load or pressure at room temperature. We demonstrate micro/nanoscale pattern formation on the Al substrates with various thicknesses from 20 ㎛ to 100 mm. Moreover, we also show how to obtain controllable pattern structures on the surface of metallic materials via the versatile EPIL technique. We expect that this imprint lithography-based new approach will be applied to other emerging nanofabrication methods for various device applications with complex geometries on the surface of metallic materials.

A Study on the Direction of Christian Political Education for Social Responsibility Based on the Ecumenical Movement (에큐메니칼 운동에 기초한 사회적 책임을 위한 기독교 정치교육의 방향)

  • Eun Joo Lee
    • Journal of Christian Education in Korea
    • /
    • v.72
    • /
    • pp.341-366
    • /
    • 2022
  • In Korean society, church once witnessed the period of its being considered light and salt. After the liberation, Korean church bestowed Jesus Christ's love to underprivileged neighbors in the industrialization process and organized practical participation activities for human rights and democratization. Nonetheless, church was sunken into quantitative growth without having qualitative growth. As church was cited as the epicenter of the spreading COVID-19, the image of selfish church has started receiving attention and there has appeared a criticism for immoral church tendency, which brought low trust about church. These things are resulted from church's failure to undertake its role with responsibility, in society. Such as this, church has lost its identity as the model of the Kingdom of God. In such a situation, church needs to remind itself of the enlightenment of the Ecumenical Movement, in order to recover trust and perform its mission. The Ecumenical Movement means accomplishing unification of the universe through a renewed church. This movement is aimed to create the earth as 'where humans can stay' and to consider the sustainability of mankinds. This purpose of this study is to examine political activities conducted for responsible participation in the church world and to find the way for church roles in this world. This researcher will attempt to investigate educational methods to help Christians in this world take full responsibility given to them, through an educational discussion about Christianity made in this context. This educational attempt means, in other words, political affairs also.

Method for Increasing Stability by Reducing the Motion of a Lightweight Floating Body (경량 부유체의 운동 저감으로 안정성 증가방법에 관한 연구)

  • Seon-Tae Kim;Jea-Yong Ko;Yu-mi Han
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.407-416
    • /
    • 2023
  • Demand for leisure facilities such as mooring facilities for berthing leisure vessels and floating pensions based on floating bodies is increasing owing to the rapid growth of the population and related industries for marine leisure activities. Owing to its relatively light weight as a fluid, inclination is easily generated by waves and surcharges flowing to the coast, resulting in frequent safety accidents because of the low stability. As a solution to this problem, a motion reduction device for floating bodies is proposed in this study. The device (motion reduction device based on the air pressure dif erence) was attached to a floating body and the effect was analyzed by comparing the results with those of a floating body without motion reduction. The effect analysis was further analyzed using a computer analysis test, and the method for increasing the stability of the floating body was studied, and its the effect was verified. Based on the analysis of the test results, the stability of the floating body increased with a motion damping device is higher than that of the floating body without a motion reducing device as the wave momentum reduces, owing to the air pressure difference. Therefore it was concluded that the use of such a device for reducing motion a floating body is useful not only for non-powered ships but also for powered and semi-submersible ships, and further research should be conducted by applying it to various fields.

Banded Iron Formations in Congo: A Review

  • Yarse Brodivier Mavoungou;Anthony Temidayo Bolarinwa;Noel Watha-Ndoudy;Georges Muhindo Kasay
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.745-764
    • /
    • 2023
  • In the Republic of Congo, Banded iron formations (BIFs) occur in two areas: the Chaillu Massif and the Ivindo Basement Complex, which are segments of the Archean Congo craton outcropping in the northwestern and southwestern parts of the country. They show interesting potential with significant mineral resources reaching 2 Bt and grades up to 60% Fe. BIFs consist mostly of oxide-rich facies (hematite/magnetite), but carbonate-rich facies are also highlighted. They are found across the country within the similar geological sequences composed of amphibolites, gneisses and greenschists. The Post-Archean Australian Shale (PAAS)-normalized patterns of BIFs show enrichment in elements such as SiO2, Fe2O3, CaO, P2O5, Cr, Cu, Zn, Nb, Hf, U and depletion in TiO2, Al2O3, MgO, Na2O, K2O, Sc, Th, Ba, Zr, Rb, Ni, V. REE diagrams show slight light REEs (rare earth elements; LREEs) compared to heavy REEs (HREEs), and positive La and Eu anomalies. The lithological associations, as well as the very high (Eu/Eu*)SN ratios> 1.8 shown by the BIFs, suggest that they are related to Algoma-type BIFs. The positive correlations between Zr and TiO2, Al2O3, Hf suggest that the contamination comes mainly from felsic rocks, while the absence of correlations between MgO and Cr, Ni argues for negligeable contributions from mafic sources. Pr/Pr* vs. Ce/Ce* diagram indicates that the Congolese BIFs were formed in basins with redox heterogeneity, which varies from suboxic to anoxic and from oxic to anoxic conditions. They were formed through hydrothermal vents in the seawater, with relatively low proportions of detrital inputs derived from igneous sources through continental weathering. Some Congolese BIFs show high contents in Cr, Ni and Cu, which suggest that iron (Fe) and silicon (Si) have been leached through hydrothermal processes associated with submarine volcanism. We discussed their tectonic setting and depositional environment and proposed that they were deposited in extensional back-arc basins, which also recorded hydrothermal vent fluids.

Effect of Seed Coat Color and Seed Weight on Protein, Oil and Fatty Acid Contents in Seeds of Soybean (Glycine max (L.) Merr.) Germplasms

  • Yu-Mi Choi;Hyemyeong Yoon;Myoung-Jae Shin;Yoonjung Lee;On Sook Hur;XiaoHan Wang;Kebede Taye Desta
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.15-15
    • /
    • 2021
  • Seed coat color and seed weight are among the key agronomical traits that determine the nutritional quality of soybean seeds. This study aimed to evaluate the contents of total protein, total oil and five prominent fatty acids in seeds of 49 soybean varieties recently cultivated in Korea, and assess the influences of seed coat color and seed weight on each. Total protein and total oil contents were in the ranges of 36.28-44.19% and 13.45-19.20%, respectively. Likewise, individual fatty acid contents were in the ranges of 9.90-12.55, 2.45-4.00, 14.97-38.74, 43.22-60.26, and 5.37-12.33% for palmitic, stearic, oleic, linoleic, and linolenic acids, respectively. Our results found significant variations of protein, oil and fatty acid contents between the soybean varieties. Moreover, both seed coat color and seed weight significantly affected total oil and fatty acid contents. Total protein content, however, was not significantly affected by any factor. Among colored soybeans, pale-yellow soybeans were characterized by a high level of oleic acid (30.70%) and low levels of stearic (2.72%), linoleic (49.30%) and linolenic (6.44%) acids, each being significantly different from the rest of colored soybeans (p < 0.05). On the other hand, small soybeans were characterized by high levels of all individual fatty acids except oleic acid. The level of oleic acid was significantly high in large seeds. Cluster analysis grouped the soybeans into two classes with notable content differences. Principal component analysis also revealed fatty acids as the prime factors for the variability observed among the soybean varieties. As expected, total oil and total protein contents showed a negative association with each other (r = -0.714, p < 0.0001). Besides, oleic acid and linoleic acid showed a tradeoff relationship (r = -0.936, p < 0.0001) which was reflected with respect to both seed coat color and seed weight. In general, the results of this study shade light on the significance of seed coat color and seed weight to distinguish soybeans in terms of protein, oil and fatty acid contents. Moreover, the soybean varieties with distinct characteristics and nutritional contents identified in this study could be important genetic resources for consumption and cultivar development.

  • PDF

A Study on Real-time Autonomous Driving Simulation System Construction based on Digital Twin - Focused on Busan EDC - (디지털트윈 기반 실시간 자율주행 시뮬레이션 시스템 구축 방안 연구 - 부산 EDC 중심으로 -)

  • Kim, Min-Soo;Park, Jong-Hyun;Sim, Min-Seok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.2
    • /
    • pp.53-66
    • /
    • 2023
  • Recently, there has been a significant interest in the development of autonomous driving simulation environment based on digital twin. In the development of such digital twin-based simulation environment, many researches has been conducted not only performance and functionality validation of autonomous driving, but also generation of virtual training data for deep learning. However, such digital twin-based autonomous driving simulation system has the problem of requiring a significant amount of time and cost for the system development and the data construction. Therefore, in this research, we aim to propose a method for rapidly designing and implementing a digital twin-based autonomous driving simulation system, using only the existing 3D models and high-definition map. Specifically, we propose a method for integrating 3D model of FBX and NGII HD Map for the Busan EDC area into CARLA, and a method for adding and modifying CARLA functions. The results of this research show that it is possible to rapidly design and implement the simulation system at a low cost by using the existing 3D models and NGII HD map. Also, the results show that our system can support various functions such as simulation scenario configuration, user-defined driving, and real-time simulation of traffic light states. We expect that usability of the system will be significantly improved when it is applied to broader geographical area in the future.

Defect analysis of calcium fluoride single crystal substrates with (100) and (111) orientation ((100) 및 (111) 배향을 갖는 CaF2 단결정 기판의 결함 분석)

  • Ye-Jin Choi;Min-Gyu Kang;Gi-Uk Lee;Mi-Seon Park;Kwang-Hee Jung;Hea-Kyun Jung;Doo-Gun Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • The CaF2 single crystal has notable characteristics such as a large band gap (12 eV), excellent transparency over a wide wavelength range, low refractive index and dispersion. Due to these outstanding properties, CaF2 single crystal has considered as a promising material for short-wavelength light sources in recent lithography processes. However, there is an inherent birefringence of the material at 157 nm and the resulting aberration can be compensated for through the combination of the (100) plane and the (111) plane. Therefore, it is necessary to investigate the characteristics according to the plane. In this study, we analyzed crystallinity, optical properties of commercial CaF2 single crystal wafers grown by the Czochralski method. In particular, through chemical etching under various conditions, it was confirmed that the shape of etch pits appears differently depending on the plane and the shape and array of specific etch pits affected by dislocations and defects were examined.

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.

Correlation Between the Headphone's Acoustical Characteristics and Subjective Preferences (헤드폰의 음향적 특성과 주관적 선호도간의 상관 관계)

  • Lee, Ki-Seung;Lee, Seok-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.96-106
    • /
    • 2009
  • In this paper, correlation between the headphone's acoustical characteristics and the subjective preferences is analyzed, and a possibility of predicting the subjective preferences using the acoustical characteristics is investigated, The headphone's acoustical characteristics include the total harmonic distortions, the variation of the frequency response which were measured by separate channel and the inter-aural correlation coefficients, Those characteristics were measured in a noise-free anechoic chamber, using a head and torso simulator, The subjective preferences were scored in terms of loudness, clearness, spaciousness, fullness and overall impression, In the subjective listening test, 12 subjects were participated who have plentiful listening experiences, The programs include 5 kinds of musics; korean popular song, pop song, light music, male-voice and classic, The 8 models of the headphones were employed, including 4 closed-type circumaural headphones, 2 open-type supraaural headphones and 2 intra-concha headphones, A significant test was carred on the results from the subjective test, using a two-way ANOVA test, The correlation coefficients between the acoustical parameters and the subjective preferences were computed, Experimental results showed that the variation of the magnitude of frequency response measured from a right channel revealed higher correlation with the subjective preferences. Whereas the inter-aural correlation coefficients have very low correlation coefficients.