• Title/Summary/Keyword: LONG-TERM MONITORING

Search Result 1,330, Processing Time 0.032 seconds

Conservation Status, Construction Type and Stability Considerations for Fortress Wall in Hongjuupseong (Town Wall) of Hongseong, Korea (홍성 홍주읍성 성벽의 보존상태 및 축성유형과 안정성 고찰)

  • Park, Junhyoung;Lee, Chanhee
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.3
    • /
    • pp.4-31
    • /
    • 2018
  • It is difficult to ascertain exactly when the Hongjuupseong (Town Wall) was first constructed, due to it had undergone several times of repair and maintenance works since it was piled up newly in 1415, when the first year of the reign of King Munjong (the 5th King of the Joseon Dynasty). Parts of its walls were demolished during the Japanese occupation, leaving the wall as it is today. Hongseong region is also susceptible to historical earthquakes for geological reasons. There have been records of earthquakes, such as the ones in 1978 and 1979 having magnitudes of 5.0 and 4.0, respectively, which left part of the walls collapsed. Again, in 2010, heavy rainfall destroyed another part of the wall. The fortress walls of the Hongjuupseong comprise various rocks, types of facing, building methods, and filling materials, according to sections. Moreover, the remaining wall parts were reused in repair works, and characteristics of each period are reflected vertically in the wall. Therefore, based on the vertical distribution of the walls, the Hongjuupseong was divided into type I, type II, and type III, according to building types. The walls consist mainly of coarse-grained granites, but, clearly different types of rocks were used for varying types of walls. The bottom of the wall shows a mixed variety of rocks and natural and split stones, whereas the center is made up mostly of coarse-grained granites. For repairs, pink feldspar granites was used, but it was different from the rock variety utilized for Suguji and Joyangmun Gate. Deterioration types to the wall can be categorized into bulging, protrusion of stones, missing stones at the basement, separation of framework, fissure and fragmentation, basement instability, and structural deformation. Manually and light-wave measurements were used to check the amount and direction of behavior of the fortress walls. A manual measurement revealed the sections that were undergoing structural deformation. Compared with the result of the light-wave measurement, the two monitoring methods proved correlational. As a result, the two measuring methods can be used complementarily for the long-term conservation and management of the wall. Additionally, the measurement system must be maintained, managed, and improved for the stability of the Hongjuupseong. The measurement of Nammunji indicated continuing changes in behavior due to collapse and rainfall. It can be greatly presumed that accumulated changes over the long period reached the threshold due to concentrated rainfall and subsequent behavioral irregularities, leading to the walls' collapse. Based on the findings, suggestions of the six grades of management from 0 to 5 have been made, to manage the Hongjuupseong more effectively. The applied suggested grade system of 501.9 m (61.10%) was assessed to grade 1, 29.5 m (3.77%) to grade 2, 10.4 m (1.33%) to grade 3, 241.2 m (30.80%) and grade 4. The sections with grade 4 concentrated around the west of Honghwamun Gate and the east of the battlement, which must be monitored regularly in preparation for a potential emergency. The six-staged management grade system is cyclical, where after performing repair and maintenance works through a comprehensive stability review, the section returned to grade 0. It is necessary to monitor thoroughly and evaluate grades on a regular basis.

A Basic Study on the Performance Improvement of Safety Certification Standards (안전인증기준 성능화에 대한 기반 연구)

  • Byeon, Jung-Hwan;Kim, Jung-Gon
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.487-499
    • /
    • 2021
  • Purpose:The purpose of the paper is to review the problems of performance enhancement of safety certification standards and to suggest directions for improvement in order to rationalize safety certification standards for future industrial development and environmental changes. Method: The problems and limitations of the safety certification system are summarized through literature review and interview with manager, and the status of safety certification standards is classified into design standards, performance standards, and detailed standards, and the status analysis is performed. In addition, by synthesizing the results of the investigation and analysis, improvements are suggested to improve the performance of the safety certification standards. Result: Through the survey, the problems and limitations of safety certification could be grouped into six categories: government-led certification system operation, standardized certification standards, long time required to improve certification, poor certification standards preparation system, and lack of reflection of industry opinions. And, as a result of analyzing the certification standards by dividing them into performance and design standards, in the case of machinery, equipment, and protection devices, the design standards were high at 69.7% and 64.9%, whereas in the case of protective equipment, the performance standards were high at 61.1%. In order to improve the performance of safety certification standards centered on design standards, it is necessary to determine the possibility of performance enhancement of the certification standards and determine the feasibility of the inspection test method. In order to improve performance, it was reviewed that it was necessary to establish a systemic foundation and infrastructure, such as strengthening the Product Liability Act, systematizing market monitoring, etc., distributing certification test tasks, and participating in the preparation of certification standards by the private sector. Conclusion: Through this study, the problems and limitations of Korea's safety certification system were summarized and the necessity for performance improvement was reviewed. Performance improvement of safety certification standards is a matter that requires preparatory work, such as legislative revision and infrastructure construction, and requires mid-to-long-term promotion. In addition, rather than improving the overall safety certification standards, the performance requirements for each item subject to certification should be reviewed and promoted, and details should be specified through additional research.

A case study on monitoring the ambient ammonia concentration in paddy soil using a passive ammonia diffusive sampler (논 토양에서 암모니아 배출 특성 모니터링을 위한 수동식 암모니아 확산형 포집기 이용 사례 연구)

  • Kim, Min-Suk;Park, Minseok;Min, Hyun-Gi;Chae, Eunji;Hyun, Seunghun;Kim, Jeong-Gyu;Koo, Namin
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.100-107
    • /
    • 2021
  • Along with an increase in the frequency of high-concentration fine particulate matter in Korea, interest and research on ammonia (NH3) are actively increasing. It is obvious that agriculture has contributed significantly to NH3 emissions. However, studies on the long-term effect of fertilizer use on the ambient NH3 concentration of agricultural land are insufficient. Therefore, in this study, NH3 concentration in the atmosphere of agricultural land was monitored for 11 months using a passive sampler. The average ambient NH3 concentration during the total study period was 2.02 ㎍ m-3 and it was found that the effect of fertilizer application on the ambient NH3 concentration was greatest in the month immediately following fertilizer application (highest ambient NH3 concentration as 11.36㎍ m-3). After that, it was expected that the NH3 volatilization was promoted by increases in summer temperature and the concentration in the atmosphere was expected to increase. However, high NH3 concentrations in the atmosphere were not observed due to strong rainfall that lasted for a long period. After that, the ambient NH3 concentration gradually decreased through autumn and winter. In summary, when studying the contribution of fertilizer to the rate of domestic NH3 emissions, it is necessary to look intensively for at least one month immediately after fertilizer application, and weather information such as precipitation and no-rain days should be considered in the field study.

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Occurrence and Distribution of C4 Plants under Diverse Agricultural Field Types in Korea (농업생태계에서 농경지유형에 따른 C4식물의 출현과 분포)

  • Cho, Kwang-Jin;Oh, Young-Ju;Kang, Kee-Kyung;Han, Min-Su;Na, Young-Eun;Kim, Miran;Choe, Lak-Jung;Kim, Myung-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.2
    • /
    • pp.85-101
    • /
    • 2013
  • In order to search for distribution characteristics on C4 plants at the paddy fields, uplands, orchard and roadside in South Korea, vascular plants were investigated. Flora investigation had been carried out from May 2002 to October 2006 at 241 plots. In the results of survey, the flora of these areas consist of 74 families, 231 genera and 352 species totally. The class frequencies were arranged by the order of Magnoliopsidae (255 species), Monocotyledoneae (89 species), Pteropsida (7 species) and Sphenopsida (1 species). The number of species in each investigated agricultural field types was 55 families with 203 species in paddy field, 49 families with 218 species in uplands, 44 families with 115 species in orchard and 48 families with 202 species in roadside respectiviely. Representative species compositions of these four agricultural field types were characterized by Artemisia princeps, Persicaria thunbergii in paddy field, Artemisia princeps, Erigeron annuus in upland and roadside, Commelina communis, Digitaria ciliaris in orchard, respectively. Therefore, indicative species in agricultural ecosystem was Artemisia princeps. Among the investigated 352 species, $C_4$ plants identified were 38 species, and the occurrence ratio of $C_4$ monocotyledonous plants were higher in paddy field, orchard and roadside than upland. Such differences in the occurrence ratio of $C_4$ plants under diverse agricultural field types reflect differences in environmental condition such as micro-climate, soil moisture under various agricultural fields. Dominant $C_4$ monocotyledonous plants were Digitaria ciliaris and Commelina communis, while $C_4$ dicotyledonous plants were Amaranthus mangostanus and Chenopodium album var. centrorubrum in agricultural fields. Naturalized plants were identified as 47 species and occurrence ratio were higher in upland and roadside than other agricultural field types. Among the investigated naturalized plants, $C_4$ plants were Amaranthus mangostanus and Amaranthus retroflexus. Distribution characteristics of representative $C_4$ plants in agricultural field types, revealed that the projected increase in temperature due to climate change may provide better conditions for the growth of $C_4$ plants. Thus, the necessity of long-term monitoring should be conducted on the diffusion of $C_4$ plants that may threaten influence agroecosystem in Korea.

A Study on the Breeding Density and Diet of Magpie Pica pica in Jeju Island1a (제주도에 서식하는 까치 Pica pica의 번식 밀도 및 식이물에 관한 연구)

  • Park, Joo-Yeon;Kim, Byoung-Soo;Oh, Hong-Shik
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.6
    • /
    • pp.648-657
    • /
    • 2008
  • This research was conducted to investigate the breeding density and seasonal food items of the magpies in Jeju Island and the near-manned islets. The examination of nest distribution to determine breeding density was performed during breeding season from February 2006 to April 2008, and that of food items from May 2006 to February 2008. A total of 2,113 nests were found across Jeju Island, the average density was $1.33\;nest/km^2$, and the magpies were distributed up to 600 meters above the sea level. The nest density was the highest in the central areas of Jeju Island, with 688 nests at $3.61\;nest/km^2$, while that in the eastern areas was the lowest, with 214 nests at $0.66\;nest/km^2$. In terms of the number of nests depending on the height above the sea level, 1,172 nests, which was equivalent to the density of $1.85\;nest/km^2$, was observed below 100m and highest among the intervals of height, but 16 nests found at 500-600m were the lowest, corresponding to $0.20\;nest/km^2$. The number of nests found in the manned islets near Jeju Island was eight in Biyang-do with the density of $15.38\;nest/km^2$, nine in U-do with $1.49\;nest/km^2$, and one in Gapa-do with $1.15\;nest/km^2$, whereas none of nests were observed in Mara-do. The contents of stomach consisted of 17 types of prey sources including countless bones, eggshells, plants, and seed, most of which were the individuals of the order Coleoptera. In spring and summer, the foraging frequency for invertebrate animals such as insects was high, but less than 30% in winter. In contrast, the magpies preyed upon plants and seeds at the frequency of 10% and 30%, respectively, in spring, while the foraging frequencies for both of them were 100% in winter and higher than any of other seasons. Eggshells and bones of birds were also detected infrequently. If the density of the magpies, which may play role as the upper predator within the ecosystem, increases, it would be expected to affect directly the reduction of the number of the species and population of endemic animals such as small birds and reptiles, etc. Therefore, it is considered that long-term monitoring for the density of the magpies and precaution is prerequisite to minimize adverse effects on ecosystem.

Analysis of ethyl glucuronide (EtG) in Hair for the diagnosis of chronic alcohol abuse of Korean (한국인의 만성 알코올 중독 진단을 위한 모발에서 Ethyl Glucuronide (EtG) 분석법 연구)

  • Gong, Bokyoung;Jo, Young-Hoon;Ju, Soyeong;Min, Ji-Sook;Kwon, Mia
    • Analytical Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.151-158
    • /
    • 2020
  • Alcohol, which can easily be obtained in the same way as ordinary beverages, is harmful enough to cause death due to excessive drinking and chronic alcohol intake, so it is important to maintain a proper amount of drinking and healthy drinking habits. In addition, the incidence of behavioral disturbances and impaired judgments that can be caused by chronic alcohol drinking of more than adequate amounts of alcohol is also significant. Accordingly it is very useful for forensic science to check whether the person involved is drunken or is alcoholism state in various accidents. Currently, in Korea, alcohol consumption is determined by detecting the level of alcohol or alcohol metabolism 'ethyl glucuronide (EtG)' in blood or urine samples. However, analysis of alcohol or EtG in blood or urine can only provide information about the current state of alcohol consumption because of a narrow window of detection time. Therefore, it is important to analyze the EtG as a long-term direct alcohol metabolite bio-marker in human hair and to investigate relationship between alcohol consumption and EtG concentration for the evaluation of chronic ethanol consumption. In this study, we established an analytical method for the detection of EtG in Korean hair efficiently and validated selectivity, linearity, limits of detection (LOD), limits of quantification (LOQ), matrix effect, recovery, process efficiency, accuracy and precision using liquid chromatography tandem mass spectrometry (LC-MS/MS). In addition, the assay performance was evaluated in Korean social drinker's hair and the postmortem hair of a chronic alcoholism. The results of this study can be useful in monitoring the alcohol abuse of Korean in clinical cases and legal procedures related to custody and provide a useful tool to evaluate postmortem diagnosis of alcoholic ketoacidosis in forensics.

A Structural Relationship of Topography, Developed Areas, and Riparian Vegetation on the Concentration of Total Nitrogen in Streams (지형, 개발지역, 수변림과 하천 내 총질소 농도와의 구조적 관계 분석)

  • Lee, Sang-Woo;Lee, Jong-Won;Park, Se-Rin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Land use in watersheds has been shown to be a major driving factor in determining the status of the water quality of streams. In this light, scientists have been investigating the roles of riparian vegetation on the relationships between land use in watersheds and the associated stream water quality. Numerous studies reported that riparian vegetation could alleviate the adverse effects caused by land use in watersheds and on stream water quality through various hydrological, biochemical and ecological mechanisms. However, this concept has been criticized as the true effects of riparian vegetation must be assessed by comprehensive models that mimic real environmental settings. This study aimed to estimate a comprehensive structural equation model integrating topography, land use, and characteristics of riparian vegetation. We used water quality data from the Nakdong River system monitored under the National Aquatic Ecosystem Monitoring Program (NAEMP) of the Korean Ministry of Environment (MOE). Also, riparian vegetation data and land use data were extracted from the Land Use/Land Cover map (LULC) produced by the MOE. The number of structural equation models (SEMs) were estimated in Amos of IBM SPSS. Study results revealed that land use was determined by elevation, and developed areas within a watershed significantly increased the concentration of Total Nitrogen (TN) in streams and LDI in riparian vegetation. On the contrary, developed areas significantly reduced LPI and PLAND. At the same time, PLAND and LDI significantly reduced the concentration of TN in streams. Thus, it was clear that developed areas in watersheds had both a direct and an indirect impact on the concentration of TN in streams, and spatial pattern and the amount of vegetation of riparian vegetation could significantly alleviate the negative impacts of developed areas on TN concentration in streams. To enhance stream water quality, reducing developed areas in a watershed is critical for long-term watershed management plans, restoration patterns for riparian vegetation could be immediately implemented since riparian areas were less developed than most other watersheds.

Deterioration Assessment for Conservation Sciences of the Five Storied Stone Pagoda in the Jeongrimsaji Temple Site, Buyeo, Korea (부여 정림사지 오층석탑의 보존과학적 풍화훼손도 평가)

  • Kim, Yeong-Taek;Lee, Chan-Hee;Lee, Myeong-Seong
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.675-687
    • /
    • 2005
  • The rocks of the five storied stone pagoda in the Jeongrimsaji temple site are 149 materials in total with porphyritic biotite granodiorite. They include pegmatite veinlet, basic xenolith and evenly developed plagioclase porphyry. This stone pagoda has comparably small fracture and cracks which are farmed in the times of rock properties, but surface exfoliation and granular decomposition are in process actively since the rocks are generally weakened from the influence of air contaminants and acid rain. Structural instability of constituting rocks in the 4th roof materials are observed to occur from distortion and tilt. Such instability is judged to threat stability of the upper part of the stone pagoda. Also, chemical weathering is operating even more as the contaminants, ferro-manganese hydroxides eluted from water-rock interaction on the rock surface. Most of the rock surface is covered with yellowish brown, dark black and light gray contaminants, and especially occur in the lower part of the roof rocks on each floor. The roof underpinning rocks are severe in surface pigmentation from manganese hydroxides and light gray contaminants. The surface of rocks lives bacteria. algae, lichen, or moss and diverse productions in colors of light gray, dark Bray and dark green. Grayish white crustose lichen grows thick on the surface with darkly discolored by fungi and algae in the first stage on basement rocks, and weeds grows wild on the upper part of each roof rocks. This stone pagoda must closely observe the movements of the upper part rock materials through minute safety diagnosis and long term monitoring for structural stability. Especially since the surface discoloration of rocks and pigmentation of secondary contaminants are severe, establishment of general restoration and scientific conservation treatment are necessary through more detailed study for this stone pagoda.

The Effect of Contamination of Ion Source on Ionic Current of Quadrupole Mass Spectrometer (사중극 질량 분석기의 이온소스 오염이 이온전류에 미치는 영향)

  • Lee, K.C.;Park, C.J.;Kim, J.T.;Oh, E.S.;Hong, K.S.;Hong, S.S.;Lim, I.T.;Yun, J.Y.;Kang, S.W.;Shin, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.197-202
    • /
    • 2009
  • The long term stability of ion current of QMS has been one of key parameters for monitoring gas process in vacuum. The time dependence of ionic current was monitored while the pressure of nitrogen gas was kept at a fixed pressure by introducing the gas into vacuum chamber. The chamber was evacuated to ${\sim}3{\times}10^{-9}\;Torr$ to reduce background signals before the measurement. Two ion sources were tested; one had brownish or black color due to gas contamination and the other one was new, i.e. cleaner. At a nitrogen pressure of $1{\times}10^{-5}\;Torr$, the ionic currents measured by the contaminated ion source decreased faster with time. The decrease rate was respectively ${\sim}46%$ for cleaner one and ${\sim}84%$ for contaminated one after ${\sim}5.5%$ hours. In order to test the effect of filament material on the ion current decrease, we fabricated a tungsten(W) filament which consisted of two parts; one half was made of W and the other was coated with yttria. The similar decrease of ionic currents were shown for the two types of filaments, indicating that slight change of temperature of filament due to material difference i.e. baking effect could not improve the origin of ionic current decrease. Overall the decreasing rate of ionic current is more closely associated with contaminated ion source of QMS rather than its filament materials.