• Title/Summary/Keyword: LOG operator

Search Result 53, Processing Time 0.02 seconds

Penalized variable selection in mean-variance accelerated failure time models (평균-분산 가속화 실패시간 모형에서 벌점화 변수선택)

  • Kwon, Ji Hoon;Ha, Il Do
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.411-425
    • /
    • 2021
  • Accelerated failure time (AFT) model represents a linear relationship between the log-survival time and covariates. We are interested in the inference of covariate's effect affecting the variation of survival times in the AFT model. Thus, we need to model the variance as well as the mean of survival times. We call the resulting model mean and variance AFT (MV-AFT) model. In this paper, we propose a variable selection procedure of regression parameters of mean and variance in MV-AFT model using penalized likelihood function. For the variable selection, we study four penalty functions, i.e. least absolute shrinkage and selection operator (LASSO), adaptive lasso (ALASSO), smoothly clipped absolute deviation (SCAD) and hierarchical likelihood (HL). With this procedure we can select important covariates and estimate the regression parameters at the same time. The performance of the proposed method is evaluated using simulation studies. The proposed method is illustrated with a clinical example dataset.

Change detection algorithm based on amplitude statistical distribution for high resolution SAR image (통계분포에 기반한 고해상도 SAR 영상의 변화탐지 알고리즘 구현 및 적용)

  • Lee, Kiwoong;Kang, Seoli;Kim, Ahleum;Song, Kyungmin;Lee, Wookyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.227-244
    • /
    • 2015
  • Synthetic Aperture Radar is able to provide images of wide coverage in day, night, and all-weather conditions. Recently, as the SAR image resolution improves up to the sub-meter level, their applications are rapidly expanding accordingly. Especially there is a growing interest in the use of geographic information of high resolution SAR images and the change detection will be one of the most important technique for their applications. In this paper, an automatic threshold tracking and change detection algorithm is proposed applicable to high-resolution SAR images. To detect changes within SAR image, a reference image is generated using log-ratio operator and its amplitude distribution is estimated through K-S test. Assuming SAR image has a non-gaussian amplitude distribution, a generalized thresholding technique is applied using Kittler and Illingworth minimum-error estimation. Also, MoLC parametric estimation method is adopted to improve the algorithm performance on rough ground target. The implemented algorithm is tested and verified on the simulated SAR raw data. Then, it is applied to the spaceborne high-resolution SAR images taken by Cosmo-Skymed and KOMPSAT-5 and the performances are analyzed and compared.

A Study on Evaluation of Harbor VTS Operators' Workload by the Analysis of Marine Traffic (교통량 분석을 통한 항만 VTS 관제사의 업무량 평가)

  • Park, Sung-Yong;Park, Jin-Soo;Kang, Jung-Gu;Park, Young-Soo
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.569-576
    • /
    • 2008
  • By the development of international trade in last decades, Korean International Trade has been grown rapidly and Korean Port and Port facilities have been improved stimultaneously: finally volume of the marine traffic increased rapidly. Presently, 15 VTS centers have serving in Korean waters and since the introduction of the first VIS Center in Korea there is no quantitative analysis to find workload of VIS operator. After that Port-MIS and De-brief data have been gathered for 7 days and inbound-outbound vessels time-g/t table prepared and traffic volume examined for each V1S center. Hence $L^2$ conversion traffic volume and dangerous vessel ratio obtained Later on conversion controlled number obtained by denoting ratio 1.0 to directly controlled vessels by VTSO and denoting ratio 0.3 to indirectly controlled vessels by VTSO. Traffic volume, large vessel ratio, dangerous vessel ratio, dimension of VTS controlled area, marine accident occurrence frequency and communication volume of comm. log can be counted as a factor which influence to workload of VTSO. All those factors have been examined and analyzed. Finally, ship's size and dangerous vessel ratio have been chosen to derive the Number of composite conversion control for workload formula.