• Title/Summary/Keyword: LOCF

Search Result 2, Processing Time 0.012 seconds

Sample Size Calculations with Dropouts in Clinical Trials (임상시험에서 중도탈락을 고려한 표본크기의 결정)

  • Lee, Ki-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.353-365
    • /
    • 2008
  • The sample size in a clinical trial is determined by the hypothesis, the variance of observations, the effect size, the power and the significance level. Dropouts in clinical trials are inevitable, so we need to consider dropouts on the determination of sample size. It is common that some proportion corresponding to the expected dropout rate would be added to the sample size calculated from a mathematical equation. This paper proposes new equations for calculating sample size dealing with dropouts. Since we observe data longitudinally in most clinical trials, we can use a last observation to impute for missing one in the intention to treat (ITT) trials, and this technique is called last observation carried forward(LOCF). But LOCF might make deviations on the assumed variance and effect size, so that we could not guarantee the power of test with the sample size obtained from the existing equation. This study suggests the formulas for sample size involving information about dropouts and shows the properties of the proposed method in testing equality of means.

A Study on One Factorial Longitudinal Data Analysis with Informative Drop-out

  • Lee, Ki-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1053-1065
    • /
    • 2006
  • This paper proposes a method in one-way layouts for longitudinal data with informative drop-out. When dropouts are informative, that is, correlated with unobserved data and/or the previous observed data, the simple imputation methods such as 'last observation carried forward' (LOCF) methods would arise the bias of the testing models. The maximum likelihood procedure combined with a logit model for the drop-out process is proposed to test treatment effects for one factorial designs and compared with LOCF method in two examples.

  • PDF